summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zmin.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zmin.v')
-rw-r--r--theories/ZArith/Zmin.v80
1 files changed, 40 insertions, 40 deletions
diff --git a/theories/ZArith/Zmin.v b/theories/ZArith/Zmin.v
index d79ebe98..37d78a74 100644
--- a/theories/ZArith/Zmin.v
+++ b/theories/ZArith/Zmin.v
@@ -5,126 +5,126 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zmin.v 8032 2006-02-12 21:20:48Z herbelin $ i*)
+(*i $Id: Zmin.v 9302 2006-10-27 21:21:17Z barras $ i*)
(** Initial version from Pierre Crégut (CNET, Lannion, France), 1996.
Further extensions by the Coq development team, with suggestions
from Russell O'Connor (Radbout U., Nijmegen, The Netherlands).
*)
-Require Import Arith.
+Require Import Arith_base.
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Open Local Scope Z_scope.
-(**********************************************************************)
-(** *** Minimum on binary integer numbers *)
+(**************************************)
+(** Minimum on binary integer numbers *)
Unboxed Definition Zmin (n m:Z) :=
match n ?= m with
- | Eq | Lt => n
- | Gt => m
+ | Eq | Lt => n
+ | Gt => m
end.
-(** Characterization of the minimum on binary integer numbers *)
+(** * Characterization of the minimum on binary integer numbers *)
Lemma Zmin_case_strong : forall (n m:Z) (P:Z -> Type),
(n<=m -> P n) -> (m<=n -> P m) -> P (Zmin n m).
Proof.
-intros n m P H1 H2; unfold Zmin, Zle, Zge in *.
-rewrite <- (Zcompare_antisym n m) in H2.
-destruct (n ?= m); (apply H1|| apply H2); discriminate.
+ intros n m P H1 H2; unfold Zmin, Zle, Zge in *.
+ rewrite <- (Zcompare_antisym n m) in H2.
+ destruct (n ?= m); (apply H1|| apply H2); discriminate.
Qed.
Lemma Zmin_case : forall (n m:Z) (P:Z -> Type), P n -> P m -> P (Zmin n m).
Proof.
-intros n m P H1 H2; unfold Zmin in |- *; case (n ?= m); auto with arith.
+ intros n m P H1 H2; unfold Zmin in |- *; case (n ?= m); auto with arith.
Qed.
-(** Greatest lower bound properties of min *)
+(** * Greatest lower bound properties of min *)
Lemma Zle_min_l : forall n m:Z, Zmin n m <= n.
Proof.
-intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E;
- [ apply Zle_refl
- | apply Zle_refl
- | apply Zlt_le_weak; apply Zgt_lt; exact E ].
+ intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E;
+ [ apply Zle_refl
+ | apply Zle_refl
+ | apply Zlt_le_weak; apply Zgt_lt; exact E ].
Qed.
Lemma Zle_min_r : forall n m:Z, Zmin n m <= m.
Proof.
-intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E;
- [ unfold Zle in |- *; rewrite E; discriminate
- | unfold Zle in |- *; rewrite E; discriminate
- | apply Zle_refl ].
+ intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E;
+ [ unfold Zle in |- *; rewrite E; discriminate
+ | unfold Zle in |- *; rewrite E; discriminate
+ | apply Zle_refl ].
Qed.
Lemma Zmin_glb : forall n m p:Z, p <= n -> p <= m -> p <= Zmin n m.
Proof.
-intros; apply Zmin_case; assumption.
+ intros; apply Zmin_case; assumption.
Qed.
-(** Semi-lattice properties of min *)
+(** * Semi-lattice properties of min *)
Lemma Zmin_idempotent : forall n:Z, Zmin n n = n.
Proof.
-unfold Zmin in |- *; intros; elim (n ?= n); auto.
+ unfold Zmin in |- *; intros; elim (n ?= n); auto.
Qed.
Notation Zmin_n_n := Zmin_idempotent (only parsing).
Lemma Zmin_comm : forall n m:Z, Zmin n m = Zmin m n.
Proof.
-intros n m; unfold Zmin.
-rewrite <- (Zcompare_antisym n m).
-assert (H:=Zcompare_Eq_eq n m).
-destruct (n ?= m); simpl; auto.
+ intros n m; unfold Zmin.
+ rewrite <- (Zcompare_antisym n m).
+ assert (H:=Zcompare_Eq_eq n m).
+ destruct (n ?= m); simpl; auto.
Qed.
Lemma Zmin_assoc : forall n m p:Z, Zmin n (Zmin m p) = Zmin (Zmin n m) p.
Proof.
-intros n m p; repeat apply Zmin_case_strong; intros;
- reflexivity || (try apply Zle_antisym); eauto with zarith.
+ intros n m p; repeat apply Zmin_case_strong; intros;
+ reflexivity || (try apply Zle_antisym); eauto with zarith.
Qed.
-(** Additional properties of min *)
+(** * Additional properties of min *)
Lemma Zmin_irreducible_inf : forall n m:Z, {Zmin n m = n} + {Zmin n m = m}.
Proof.
-unfold Zmin in |- *; intros; elim (n ?= m); auto.
+ unfold Zmin in |- *; intros; elim (n ?= m); auto.
Qed.
Lemma Zmin_irreducible : forall n m:Z, Zmin n m = n \/ Zmin n m = m.
Proof.
-intros n m; destruct (Zmin_irreducible_inf n m); [left|right]; trivial.
+ intros n m; destruct (Zmin_irreducible_inf n m); [left|right]; trivial.
Qed.
Notation Zmin_or := Zmin_irreducible (only parsing).
Lemma Zmin_le_prime_inf : forall n m p:Z, Zmin n m <= p -> {n <= p} + {m <= p}.
Proof.
-intros n m p; apply Zmin_case; auto.
+ intros n m p; apply Zmin_case; auto.
Qed.
-(** Operations preserving min *)
+(** * Operations preserving min *)
Lemma Zsucc_min_distr :
forall n m:Z, Zsucc (Zmin n m) = Zmin (Zsucc n) (Zsucc m).
Proof.
-intros n m; unfold Zmin in |- *; rewrite (Zcompare_succ_compat n m);
- elim_compare n m; intros E; rewrite E; auto with arith.
+ intros n m; unfold Zmin in |- *; rewrite (Zcompare_succ_compat n m);
+ elim_compare n m; intros E; rewrite E; auto with arith.
Qed.
Notation Zmin_SS := Zsucc_min_distr (only parsing).
Lemma Zplus_min_distr_r : forall n m p:Z, Zmin (n + p) (m + p) = Zmin n m + p.
Proof.
-intros x y n; unfold Zmin in |- *.
-rewrite (Zplus_comm x n); rewrite (Zplus_comm y n);
- rewrite (Zcompare_plus_compat x y n).
-case (x ?= y); apply Zplus_comm.
+ intros x y n; unfold Zmin in |- *.
+ rewrite (Zplus_comm x n); rewrite (Zplus_comm y n);
+ rewrite (Zcompare_plus_compat x y n).
+ case (x ?= y); apply Zplus_comm.
Qed.
Notation Zmin_plus := Zplus_min_distr_r (only parsing).