diff options
Diffstat (limited to 'theories/ZArith/Zmin.v')
-rw-r--r-- | theories/ZArith/Zmin.v | 146 |
1 files changed, 45 insertions, 101 deletions
diff --git a/theories/ZArith/Zmin.v b/theories/ZArith/Zmin.v index bad40a32..5dd26fa3 100644 --- a/theories/ZArith/Zmin.v +++ b/theories/ZArith/Zmin.v @@ -5,142 +5,86 @@ (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zmin.v 10028 2007-07-18 22:38:06Z letouzey $ i*) +(*i $Id$ i*) -(** Initial version from Pierre Crégut (CNET, Lannion, France), 1996. - Further extensions by the Coq development team, with suggestions - from Russell O'Connor (Radbout U., Nijmegen, The Netherlands). - *) +(** THIS FILE IS DEPRECATED. Use [Zminmax] instead. *) -Require Import Arith_base. -Require Import BinInt. -Require Import Zcompare. -Require Import Zorder. +Require Import BinInt Zorder Zminmax. Open Local Scope Z_scope. -(**************************************) -(** Minimum on binary integer numbers *) +(** [Zmin] is now [Zminmax.Zmin]. Code that do things like + [unfold Zmin.Zmin] will have to be adapted, and neither + a [Definition] or a [Notation] here can help much. *) -Unboxed Definition Zmin (n m:Z) := - match n ?= m with - | Eq | Lt => n - | Gt => m - end. (** * Characterization of the minimum on binary integer numbers *) -Lemma Zmin_case_strong : forall (n m:Z) (P:Z -> Type), - (n<=m -> P n) -> (m<=n -> P m) -> P (Zmin n m). -Proof. - intros n m P H1 H2; unfold Zmin, Zle, Zge in *. - rewrite <- (Zcompare_antisym n m) in H2. - destruct (n ?= m); (apply H1|| apply H2); discriminate. -Qed. - -Lemma Zmin_case : forall (n m:Z) (P:Z -> Type), P n -> P m -> P (Zmin n m). -Proof. - intros n m P H1 H2; unfold Zmin in |- *; case (n ?= m); auto with arith. -Qed. +Definition Zmin_case := Z.min_case. +Definition Zmin_case_strong := Z.min_case_strong. -Lemma Zmin_spec : forall x y:Z, - x <= y /\ Zmin x y = x \/ - x > y /\ Zmin x y = y. +Lemma Zmin_spec : forall x y, + x <= y /\ Zmin x y = x \/ x > y /\ Zmin x y = y. Proof. - intros; unfold Zmin, Zle, Zgt. - destruct (Zcompare x y); [ left | left | right ]; split; auto; discriminate. + intros x y. rewrite Zgt_iff_lt, Z.min_comm. destruct (Z.min_spec y x); auto. Qed. (** * Greatest lower bound properties of min *) -Lemma Zle_min_l : forall n m:Z, Zmin n m <= n. -Proof. - intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E; - [ apply Zle_refl - | apply Zle_refl - | apply Zlt_le_weak; apply Zgt_lt; exact E ]. -Qed. +Definition Zle_min_l : forall n m, Zmin n m <= n := Z.le_min_l. +Definition Zle_min_r : forall n m, Zmin n m <= m := Z.le_min_r. -Lemma Zle_min_r : forall n m:Z, Zmin n m <= m. -Proof. - intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E; - [ unfold Zle in |- *; rewrite E; discriminate - | unfold Zle in |- *; rewrite E; discriminate - | apply Zle_refl ]. -Qed. +Definition Zmin_glb : forall n m p, p <= n -> p <= m -> p <= Zmin n m + := Z.min_glb. +Definition Zmin_glb_lt : forall n m p, p < n -> p < m -> p < Zmin n m + := Z.min_glb_lt. -Lemma Zmin_glb : forall n m p:Z, p <= n -> p <= m -> p <= Zmin n m. -Proof. - intros; apply Zmin_case; assumption. -Qed. +(** * Compatibility with order *) -(** * Semi-lattice properties of min *) +Definition Zle_min_compat_r : forall n m p, n <= m -> Zmin n p <= Zmin m p + := Z.min_le_compat_r. +Definition Zle_min_compat_l : forall n m p, n <= m -> Zmin p n <= Zmin p m + := Z.min_le_compat_l. -Lemma Zmin_idempotent : forall n:Z, Zmin n n = n. -Proof. - unfold Zmin in |- *; intros; elim (n ?= n); auto. -Qed. +(** * Semi-lattice properties of min *) +Definition Zmin_idempotent : forall n, Zmin n n = n := Z.min_id. Notation Zmin_n_n := Zmin_idempotent (only parsing). - -Lemma Zmin_comm : forall n m:Z, Zmin n m = Zmin m n. -Proof. - intros n m; unfold Zmin. - rewrite <- (Zcompare_antisym n m). - assert (H:=Zcompare_Eq_eq n m). - destruct (n ?= m); simpl; auto. -Qed. - -Lemma Zmin_assoc : forall n m p:Z, Zmin n (Zmin m p) = Zmin (Zmin n m) p. -Proof. - intros n m p; repeat apply Zmin_case_strong; intros; - reflexivity || (try apply Zle_antisym); eauto with zarith. -Qed. +Definition Zmin_comm : forall n m, Zmin n m = Zmin m n := Z.min_comm. +Definition Zmin_assoc : forall n m p, Zmin n (Zmin m p) = Zmin (Zmin n m) p + := Z.min_assoc. (** * Additional properties of min *) -Lemma Zmin_irreducible_inf : forall n m:Z, {Zmin n m = n} + {Zmin n m = m}. -Proof. - unfold Zmin in |- *; intros; elim (n ?= m); auto. -Qed. +Lemma Zmin_irreducible_inf : forall n m, {Zmin n m = n} + {Zmin n m = m}. +Proof. exact Z.min_dec. Qed. -Lemma Zmin_irreducible : forall n m:Z, Zmin n m = n \/ Zmin n m = m. -Proof. - intros n m; destruct (Zmin_irreducible_inf n m); [left|right]; trivial. -Qed. +Lemma Zmin_irreducible : forall n m, Zmin n m = n \/ Zmin n m = m. +Proof. intros; destruct (Z.min_dec n m); auto. Qed. Notation Zmin_or := Zmin_irreducible (only parsing). -Lemma Zmin_le_prime_inf : forall n m p:Z, Zmin n m <= p -> {n <= p} + {m <= p}. -Proof. - intros n m p; apply Zmin_case; auto. -Qed. +Lemma Zmin_le_prime_inf : forall n m p, Zmin n m <= p -> {n <= p} + {m <= p}. +Proof. intros n m p; apply Zmin_case; auto. Qed. (** * Operations preserving min *) -Lemma Zsucc_min_distr : - forall n m:Z, Zsucc (Zmin n m) = Zmin (Zsucc n) (Zsucc m). -Proof. - intros n m; unfold Zmin in |- *; rewrite (Zcompare_succ_compat n m); - elim_compare n m; intros E; rewrite E; auto with arith. -Qed. +Definition Zsucc_min_distr : + forall n m, Zsucc (Zmin n m) = Zmin (Zsucc n) (Zsucc m) + := Z.succ_min_distr. -Notation Zmin_SS := Zsucc_min_distr (only parsing). +Notation Zmin_SS := Z.succ_min_distr (only parsing). -Lemma Zplus_min_distr_r : forall n m p:Z, Zmin (n + p) (m + p) = Zmin n m + p. -Proof. - intros x y n; unfold Zmin in |- *. - rewrite (Zplus_comm x n); rewrite (Zplus_comm y n); - rewrite (Zcompare_plus_compat x y n). - case (x ?= y); apply Zplus_comm. -Qed. +Definition Zplus_min_distr_r : + forall n m p, Zmin (n + p) (m + p) = Zmin n m + p + := Z.plus_min_distr_r. -Notation Zmin_plus := Zplus_min_distr_r (only parsing). +Notation Zmin_plus := Z.plus_min_distr_r (only parsing). (** * Minimum and Zpos *) -Lemma Zpos_min : forall p q, Zpos (Pmin p q) = Zmin (Zpos p) (Zpos q). -Proof. - intros; unfold Zmin, Pmin; simpl; destruct Pcompare; auto. -Qed. +Definition Zpos_min : forall p q, Zpos (Pmin p q) = Zmin (Zpos p) (Zpos q) + := Z.pos_min. + + |