diff options
Diffstat (limited to 'theories/ZArith/Zgcd_alt.v')
-rw-r--r-- | theories/ZArith/Zgcd_alt.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/ZArith/Zgcd_alt.v b/theories/ZArith/Zgcd_alt.v index 1e19479e..14286bde 100644 --- a/theories/ZArith/Zgcd_alt.v +++ b/theories/ZArith/Zgcd_alt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -23,6 +23,7 @@ Require Import ZArith_base. Require Import ZArithRing. Require Import Zdiv. Require Import Znumtheory. +Require Import Omega. Open Scope Z_scope. @@ -104,8 +105,7 @@ Open Scope Z_scope. Lemma fibonacci_pos : forall n, 0 <= fibonacci n. Proof. - cut (forall N n, (n<N)%nat -> 0<=fibonacci n). - eauto. + enough (forall N n, (n<N)%nat -> 0<=fibonacci n) by eauto. induction N. inversion 1. intros. |