diff options
Diffstat (limited to 'theories/ZArith/Zeven.v')
-rw-r--r-- | theories/ZArith/Zeven.v | 8 |
1 files changed, 5 insertions, 3 deletions
diff --git a/theories/ZArith/Zeven.v b/theories/ZArith/Zeven.v index c83a863f..d88bf7a9 100644 --- a/theories/ZArith/Zeven.v +++ b/theories/ZArith/Zeven.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -197,12 +197,14 @@ Qed. Lemma Zquot2_quot n : Z.quot2 n = n ÷ 2. Proof. assert (AUX : forall m, 0 < m -> Z.quot2 m = m ÷ 2). - { intros m Hm. + { + intros m Hm. apply Z.quot_unique with (if Z.odd m then Z.sgn m else 0). now apply Z.lt_le_incl. rewrite Z.sgn_pos by trivial. destruct (Z.odd m); now split. - apply Zquot2_odd_eqn. } + apply Zquot2_odd_eqn. + } destruct (Z.lt_trichotomy 0 n) as [POS|[NUL|NEG]]. - now apply AUX. - now subst. |