summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zdiv.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zdiv.v')
-rw-r--r--theories/ZArith/Zdiv.v423
1 files changed, 423 insertions, 0 deletions
diff --git a/theories/ZArith/Zdiv.v b/theories/ZArith/Zdiv.v
new file mode 100644
index 00000000..84eb2259
--- /dev/null
+++ b/theories/ZArith/Zdiv.v
@@ -0,0 +1,423 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Zdiv.v,v 1.21.2.1 2004/07/16 19:31:21 herbelin Exp $ i*)
+
+(* Contribution by Claude Marché and Xavier Urbain *)
+
+(**
+
+Euclidean Division
+
+Defines first of function that allows Coq to normalize.
+Then only after proves the main required property.
+
+*)
+
+Require Export ZArith_base.
+Require Import Zbool.
+Require Import Omega.
+Require Import ZArithRing.
+Require Import Zcomplements.
+Open Local Scope Z_scope.
+
+(**
+
+ Euclidean division of a positive by a integer
+ (that is supposed to be positive).
+
+ total function than returns an arbitrary value when
+ divisor is not positive
+
+*)
+
+Fixpoint Zdiv_eucl_POS (a:positive) (b:Z) {struct a} :
+ Z * Z :=
+ match a with
+ | xH => if Zge_bool b 2 then (0, 1) else (1, 0)
+ | xO a' =>
+ let (q, r) := Zdiv_eucl_POS a' b in
+ let r' := 2 * r in
+ if Zgt_bool b r' then (2 * q, r') else (2 * q + 1, r' - b)
+ | xI a' =>
+ let (q, r) := Zdiv_eucl_POS a' b in
+ let r' := 2 * r + 1 in
+ if Zgt_bool b r' then (2 * q, r') else (2 * q + 1, r' - b)
+ end.
+
+
+(**
+
+ Euclidean division of integers.
+
+ Total function than returns (0,0) when dividing by 0.
+
+*)
+
+(*
+
+ The pseudo-code is:
+
+ if b = 0 : (0,0)
+
+ if b <> 0 and a = 0 : (0,0)
+
+ if b > 0 and a < 0 : let (q,r) = div_eucl_pos (-a) b in
+ if r = 0 then (-q,0) else (-(q+1),b-r)
+
+ if b < 0 and a < 0 : let (q,r) = div_eucl (-a) (-b) in (q,-r)
+
+ if b < 0 and a > 0 : let (q,r) = div_eucl a (-b) in
+ if r = 0 then (-q,0) else (-(q+1),b+r)
+
+ In other word, when b is non-zero, q is chosen to be the greatest integer
+ smaller or equal to a/b. And sgn(r)=sgn(b) and |r| < |b|.
+
+*)
+
+Definition Zdiv_eucl (a b:Z) : Z * Z :=
+ match a, b with
+ | Z0, _ => (0, 0)
+ | _, Z0 => (0, 0)
+ | Zpos a', Zpos _ => Zdiv_eucl_POS a' b
+ | Zneg a', Zpos _ =>
+ let (q, r) := Zdiv_eucl_POS a' b in
+ match r with
+ | Z0 => (- q, 0)
+ | _ => (- (q + 1), b - r)
+ end
+ | Zneg a', Zneg b' => let (q, r) := Zdiv_eucl_POS a' (Zpos b') in (q, - r)
+ | Zpos a', Zneg b' =>
+ let (q, r) := Zdiv_eucl_POS a' (Zpos b') in
+ match r with
+ | Z0 => (- q, 0)
+ | _ => (- (q + 1), b + r)
+ end
+ end.
+
+
+(** Division and modulo are projections of [Zdiv_eucl] *)
+
+Definition Zdiv (a b:Z) : Z := let (q, _) := Zdiv_eucl a b in q.
+
+Definition Zmod (a b:Z) : Z := let (_, r) := Zdiv_eucl a b in r.
+
+(* Tests:
+
+Eval Compute in `(Zdiv_eucl 7 3)`.
+
+Eval Compute in `(Zdiv_eucl (-7) 3)`.
+
+Eval Compute in `(Zdiv_eucl 7 (-3))`.
+
+Eval Compute in `(Zdiv_eucl (-7) (-3))`.
+
+*)
+
+
+(**
+
+ Main division theorem.
+
+ First a lemma for positive
+
+*)
+
+Lemma Z_div_mod_POS :
+ forall b:Z,
+ b > 0 ->
+ forall a:positive,
+ let (q, r) := Zdiv_eucl_POS a b in Zpos a = b * q + r /\ 0 <= r < b.
+Proof.
+simple induction a; unfold Zdiv_eucl_POS in |- *; fold Zdiv_eucl_POS in |- *.
+
+intro p; case (Zdiv_eucl_POS p b); intros q r [H0 H1].
+generalize (Zgt_cases b (2 * r + 1)).
+case (Zgt_bool b (2 * r + 1));
+ (rewrite BinInt.Zpos_xI; rewrite H0; split; [ ring | omega ]).
+
+intros p; case (Zdiv_eucl_POS p b); intros q r [H0 H1].
+generalize (Zgt_cases b (2 * r)).
+case (Zgt_bool b (2 * r)); rewrite BinInt.Zpos_xO;
+ change (Zpos (xO p)) with (2 * Zpos p) in |- *; rewrite H0;
+ (split; [ ring | omega ]).
+
+generalize (Zge_cases b 2).
+case (Zge_bool b 2); (intros; split; [ ring | omega ]).
+omega.
+Qed.
+
+
+Theorem Z_div_mod :
+ forall a b:Z,
+ b > 0 -> let (q, r) := Zdiv_eucl a b in a = b * q + r /\ 0 <= r < b.
+Proof.
+intros a b; case a; case b; try (simpl in |- *; intros; omega).
+unfold Zdiv_eucl in |- *; intros; apply Z_div_mod_POS; trivial.
+
+intros; discriminate.
+
+intros.
+generalize (Z_div_mod_POS (Zpos p) H p0).
+unfold Zdiv_eucl in |- *.
+case (Zdiv_eucl_POS p0 (Zpos p)).
+intros z z0.
+case z0.
+
+intros [H1 H2].
+split; trivial.
+replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
+
+intros p1 [H1 H2].
+split; trivial.
+replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
+generalize (Zorder.Zgt_pos_0 p1); omega.
+
+intros p1 [H1 H2].
+split; trivial.
+replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
+generalize (Zorder.Zlt_neg_0 p1); omega.
+
+intros; discriminate.
+Qed.
+
+(** Existence theorems *)
+
+Theorem Zdiv_eucl_exist :
+ forall b:Z,
+ b > 0 ->
+ forall a:Z, {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < b}.
+Proof.
+intros b Hb a.
+exists (Zdiv_eucl a b).
+exact (Z_div_mod a b Hb).
+Qed.
+
+Implicit Arguments Zdiv_eucl_exist.
+
+Theorem Zdiv_eucl_extended :
+ forall b:Z,
+ b <> 0 ->
+ forall a:Z,
+ {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < Zabs b}.
+Proof.
+intros b Hb a.
+elim (Z_le_gt_dec 0 b); intro Hb'.
+cut (b > 0); [ intro Hb'' | omega ].
+rewrite Zabs_eq; [ apply Zdiv_eucl_exist; assumption | assumption ].
+cut (- b > 0); [ intro Hb'' | omega ].
+elim (Zdiv_eucl_exist Hb'' a); intros qr.
+elim qr; intros q r Hqr.
+exists (- q, r).
+elim Hqr; intros.
+split.
+rewrite <- Zmult_opp_comm; assumption.
+rewrite Zabs_non_eq; [ assumption | omega ].
+Qed.
+
+Implicit Arguments Zdiv_eucl_extended.
+
+(** Auxiliary lemmas about [Zdiv] and [Zmod] *)
+
+Lemma Z_div_mod_eq : forall a b:Z, b > 0 -> a = b * Zdiv a b + Zmod a b.
+Proof.
+unfold Zdiv, Zmod in |- *.
+intros a b Hb.
+generalize (Z_div_mod a b Hb).
+case Zdiv_eucl; tauto.
+Qed.
+
+Lemma Z_mod_lt : forall a b:Z, b > 0 -> 0 <= Zmod a b < b.
+Proof.
+unfold Zmod in |- *.
+intros a b Hb.
+generalize (Z_div_mod a b Hb).
+case (Zdiv_eucl a b); tauto.
+Qed.
+
+Lemma Z_div_POS_ge0 :
+ forall (b:Z) (a:positive), let (q, _) := Zdiv_eucl_POS a b in q >= 0.
+Proof.
+simple induction a; unfold Zdiv_eucl_POS in |- *; fold Zdiv_eucl_POS in |- *.
+intro p; case (Zdiv_eucl_POS p b).
+intros; case (Zgt_bool b (2 * z0 + 1)); intros; omega.
+intro p; case (Zdiv_eucl_POS p b).
+intros; case (Zgt_bool b (2 * z0)); intros; omega.
+case (Zge_bool b 2); simpl in |- *; omega.
+Qed.
+
+Lemma Z_div_ge0 : forall a b:Z, b > 0 -> a >= 0 -> Zdiv a b >= 0.
+Proof.
+intros a b Hb; unfold Zdiv, Zdiv_eucl in |- *; case a; simpl in |- *; intros.
+case b; simpl in |- *; trivial.
+generalize Hb; case b; try trivial.
+auto with zarith.
+intros p0 Hp0; generalize (Z_div_POS_ge0 (Zpos p0) p).
+case (Zdiv_eucl_POS p (Zpos p0)); simpl in |- *; tauto.
+intros; discriminate.
+elim H; trivial.
+Qed.
+
+Lemma Z_div_lt : forall a b:Z, b >= 2 -> a > 0 -> Zdiv a b < a.
+Proof.
+intros. cut (b > 0); [ intro Hb | omega ].
+generalize (Z_div_mod a b Hb).
+cut (a >= 0); [ intro Ha | omega ].
+generalize (Z_div_ge0 a b Hb Ha).
+unfold Zdiv in |- *; case (Zdiv_eucl a b); intros q r H1 [H2 H3].
+cut (a >= 2 * q -> q < a); [ intro h; apply h; clear h | intros; omega ].
+apply Zge_trans with (b * q).
+omega.
+auto with zarith.
+Qed.
+
+(** Syntax *)
+
+
+
+Infix "/" := Zdiv : Z_scope.
+Infix "mod" := Zmod (at level 40, no associativity) : Z_scope.
+
+(** Other lemmas (now using the syntax for [Zdiv] and [Zmod]). *)
+
+Lemma Z_div_ge : forall a b c:Z, c > 0 -> a >= b -> a / c >= b / c.
+Proof.
+intros a b c cPos aGeb.
+generalize (Z_div_mod_eq a c cPos).
+generalize (Z_mod_lt a c cPos).
+generalize (Z_div_mod_eq b c cPos).
+generalize (Z_mod_lt b c cPos).
+intros.
+elim (Z_ge_lt_dec (a / c) (b / c)); trivial.
+intro.
+absurd (b - a >= 1).
+omega.
+rewrite H0.
+rewrite H2.
+assert
+ (c * (b / c) + b mod c - (c * (a / c) + a mod c) =
+ c * (b / c - a / c) + b mod c - a mod c).
+ring.
+rewrite H3.
+assert (c * (b / c - a / c) >= c * 1).
+apply Zmult_ge_compat_l.
+omega.
+omega.
+assert (c * 1 = c).
+ring.
+omega.
+Qed.
+
+Lemma Z_mod_plus : forall a b c:Z, c > 0 -> (a + b * c) mod c = a mod c.
+Proof.
+intros a b c cPos.
+generalize (Z_div_mod_eq a c cPos).
+generalize (Z_mod_lt a c cPos).
+generalize (Z_div_mod_eq (a + b * c) c cPos).
+generalize (Z_mod_lt (a + b * c) c cPos).
+intros.
+
+assert ((a + b * c) mod c - a mod c = c * (b + a / c - (a + b * c) / c)).
+replace ((a + b * c) mod c) with (a + b * c - c * ((a + b * c) / c)).
+replace (a mod c) with (a - c * (a / c)).
+ring.
+omega.
+omega.
+set (q := b + a / c - (a + b * c) / c) in *.
+apply (Zcase_sign q); intros.
+assert (c * q = 0).
+rewrite H4; ring.
+rewrite H5 in H3.
+omega.
+
+assert (c * q >= c).
+pattern c at 2 in |- *; replace c with (c * 1).
+apply Zmult_ge_compat_l; omega.
+ring.
+omega.
+
+assert (c * q <= - c).
+replace (- c) with (c * -1).
+apply Zmult_le_compat_l; omega.
+ring.
+omega.
+Qed.
+
+Lemma Z_div_plus : forall a b c:Z, c > 0 -> (a + b * c) / c = a / c + b.
+Proof.
+intros a b c cPos.
+generalize (Z_div_mod_eq a c cPos).
+generalize (Z_mod_lt a c cPos).
+generalize (Z_div_mod_eq (a + b * c) c cPos).
+generalize (Z_mod_lt (a + b * c) c cPos).
+intros.
+apply Zmult_reg_l with c. omega.
+replace (c * ((a + b * c) / c)) with (a + b * c - (a + b * c) mod c).
+rewrite (Z_mod_plus a b c cPos).
+pattern a at 1 in |- *; rewrite H2.
+ring.
+pattern (a + b * c) at 1 in |- *; rewrite H0.
+ring.
+Qed.
+
+Lemma Z_div_mult : forall a b:Z, b > 0 -> a * b / b = a.
+intros; replace (a * b) with (0 + a * b); auto.
+rewrite Z_div_plus; auto.
+Qed.
+
+Lemma Z_mult_div_ge : forall a b:Z, b > 0 -> b * (a / b) <= a.
+Proof.
+intros a b bPos.
+generalize (Z_div_mod_eq a _ bPos); intros.
+generalize (Z_mod_lt a _ bPos); intros.
+pattern a at 2 in |- *; rewrite H.
+omega.
+Qed.
+
+Lemma Z_mod_same : forall a:Z, a > 0 -> a mod a = 0.
+Proof.
+intros a aPos.
+generalize (Z_mod_plus 0 1 a aPos).
+replace (0 + 1 * a) with a.
+intros.
+rewrite H.
+compute in |- *.
+trivial.
+ring.
+Qed.
+
+Lemma Z_div_same : forall a:Z, a > 0 -> a / a = 1.
+Proof.
+intros a aPos.
+generalize (Z_div_plus 0 1 a aPos).
+replace (0 + 1 * a) with a.
+intros.
+rewrite H.
+compute in |- *.
+trivial.
+ring.
+Qed.
+
+Lemma Z_div_exact_1 : forall a b:Z, b > 0 -> a = b * (a / b) -> a mod b = 0.
+intros a b Hb; generalize (Z_div_mod a b Hb); unfold Zmod, Zdiv in |- *.
+case (Zdiv_eucl a b); intros q r; omega.
+Qed.
+
+Lemma Z_div_exact_2 : forall a b:Z, b > 0 -> a mod b = 0 -> a = b * (a / b).
+intros a b Hb; generalize (Z_div_mod a b Hb); unfold Zmod, Zdiv in |- *.
+case (Zdiv_eucl a b); intros q r; omega.
+Qed.
+
+Lemma Z_mod_zero_opp : forall a b:Z, b > 0 -> a mod b = 0 -> - a mod b = 0.
+intros a b Hb.
+intros.
+rewrite Z_div_exact_2 with a b; auto.
+replace (- (b * (a / b))) with (0 + - (a / b) * b).
+rewrite Z_mod_plus; auto.
+ring.
+Qed.