summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zcomplements.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zcomplements.v')
-rw-r--r--theories/ZArith/Zcomplements.v258
1 files changed, 129 insertions, 129 deletions
diff --git a/theories/ZArith/Zcomplements.v b/theories/ZArith/Zcomplements.v
index 817fbc1b..78c8a976 100644
--- a/theories/ZArith/Zcomplements.v
+++ b/theories/ZArith/Zcomplements.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zcomplements.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Zcomplements.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import ZArithRing.
Require Import ZArith_base.
@@ -19,27 +19,27 @@ Open Local Scope Z_scope.
(** About parity *)
Lemma two_or_two_plus_one :
- forall n:Z, {y : Z | n = 2 * y} + {y : Z | n = 2 * y + 1}.
+ forall n:Z, {y : Z | n = 2 * y} + {y : Z | n = 2 * y + 1}.
Proof.
-intro x; destruct x.
-left; split with 0; reflexivity.
-
-destruct p.
-right; split with (Zpos p); reflexivity.
-
-left; split with (Zpos p); reflexivity.
-
-right; split with 0; reflexivity.
-
-destruct p.
-right; split with (Zneg (1 + p)).
-rewrite BinInt.Zneg_xI.
-rewrite BinInt.Zneg_plus_distr.
-omega.
-
-left; split with (Zneg p); reflexivity.
-
-right; split with (-1); reflexivity.
+ intro x; destruct x.
+ left; split with 0; reflexivity.
+
+ destruct p.
+ right; split with (Zpos p); reflexivity.
+
+ left; split with (Zpos p); reflexivity.
+
+ right; split with 0; reflexivity.
+
+ destruct p.
+ right; split with (Zneg (1 + p)).
+ rewrite BinInt.Zneg_xI.
+ rewrite BinInt.Zneg_plus_distr.
+ omega.
+
+ left; split with (Zneg p); reflexivity.
+
+ right; split with (-1); reflexivity.
Qed.
(**********************************************************************)
@@ -50,109 +50,109 @@ Qed.
Fixpoint floor_pos (a:positive) : positive :=
match a with
- | xH => 1%positive
- | xO a' => xO (floor_pos a')
- | xI b' => xO (floor_pos b')
+ | xH => 1%positive
+ | xO a' => xO (floor_pos a')
+ | xI b' => xO (floor_pos b')
end.
Definition floor (a:positive) := Zpos (floor_pos a).
Lemma floor_gt0 : forall p:positive, floor p > 0.
Proof.
-intro.
-compute in |- *.
-trivial.
+ intro.
+ compute in |- *.
+ trivial.
Qed.
Lemma floor_ok : forall p:positive, floor p <= Zpos p < 2 * floor p.
Proof.
-unfold floor in |- *.
-intro a; induction a as [p| p| ].
-
-simpl in |- *.
-repeat rewrite BinInt.Zpos_xI.
-rewrite (BinInt.Zpos_xO (xO (floor_pos p))).
-rewrite (BinInt.Zpos_xO (floor_pos p)).
-omega.
-
-simpl in |- *.
-repeat rewrite BinInt.Zpos_xI.
-rewrite (BinInt.Zpos_xO (xO (floor_pos p))).
-rewrite (BinInt.Zpos_xO (floor_pos p)).
-rewrite (BinInt.Zpos_xO p).
-omega.
-
-simpl in |- *; omega.
+ unfold floor in |- *.
+ intro a; induction a as [p| p| ].
+
+ simpl in |- *.
+ repeat rewrite BinInt.Zpos_xI.
+ rewrite (BinInt.Zpos_xO (xO (floor_pos p))).
+ rewrite (BinInt.Zpos_xO (floor_pos p)).
+ omega.
+
+ simpl in |- *.
+ repeat rewrite BinInt.Zpos_xI.
+ rewrite (BinInt.Zpos_xO (xO (floor_pos p))).
+ rewrite (BinInt.Zpos_xO (floor_pos p)).
+ rewrite (BinInt.Zpos_xO p).
+ omega.
+
+ simpl in |- *; omega.
Qed.
(**********************************************************************)
(** Two more induction principles over [Z]. *)
Theorem Z_lt_abs_rec :
- forall P:Z -> Set,
- (forall n:Z, (forall m:Z, Zabs m < Zabs n -> P m) -> P n) ->
- forall n:Z, P n.
+ forall P:Z -> Set,
+ (forall n:Z, (forall m:Z, Zabs m < Zabs n -> P m) -> P n) ->
+ forall n:Z, P n.
Proof.
-intros P HP p.
-set (Q := fun z => 0 <= z -> P z * P (- z)) in *.
-cut (Q (Zabs p)); [ intros | apply (Z_lt_rec Q); auto with zarith ].
-elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith.
-unfold Q in |- *; clear Q; intros.
-apply pair; apply HP.
-rewrite Zabs_eq; auto; intros.
-elim (H (Zabs m)); intros; auto with zarith.
-elim (Zabs_dec m); intro eq; rewrite eq; trivial.
-rewrite Zabs_non_eq; auto with zarith.
-rewrite Zopp_involutive; intros.
-elim (H (Zabs m)); intros; auto with zarith.
-elim (Zabs_dec m); intro eq; rewrite eq; trivial.
+ intros P HP p.
+ set (Q := fun z => 0 <= z -> P z * P (- z)) in *.
+ cut (Q (Zabs p)); [ intros | apply (Z_lt_rec Q); auto with zarith ].
+ elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith.
+ unfold Q in |- *; clear Q; intros.
+ apply pair; apply HP.
+ rewrite Zabs_eq; auto; intros.
+ elim (H (Zabs m)); intros; auto with zarith.
+ elim (Zabs_dec m); intro eq; rewrite eq; trivial.
+ rewrite Zabs_non_eq; auto with zarith.
+ rewrite Zopp_involutive; intros.
+ elim (H (Zabs m)); intros; auto with zarith.
+ elim (Zabs_dec m); intro eq; rewrite eq; trivial.
Qed.
Theorem Z_lt_abs_induction :
- forall P:Z -> Prop,
- (forall n:Z, (forall m:Z, Zabs m < Zabs n -> P m) -> P n) ->
- forall n:Z, P n.
+ forall P:Z -> Prop,
+ (forall n:Z, (forall m:Z, Zabs m < Zabs n -> P m) -> P n) ->
+ forall n:Z, P n.
Proof.
-intros P HP p.
-set (Q := fun z => 0 <= z -> P z /\ P (- z)) in *.
-cut (Q (Zabs p)); [ intros | apply (Z_lt_induction Q); auto with zarith ].
-elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith.
-unfold Q in |- *; clear Q; intros.
-split; apply HP.
-rewrite Zabs_eq; auto; intros.
-elim (H (Zabs m)); intros; auto with zarith.
-elim (Zabs_dec m); intro eq; rewrite eq; trivial.
-rewrite Zabs_non_eq; auto with zarith.
-rewrite Zopp_involutive; intros.
-elim (H (Zabs m)); intros; auto with zarith.
-elim (Zabs_dec m); intro eq; rewrite eq; trivial.
+ intros P HP p.
+ set (Q := fun z => 0 <= z -> P z /\ P (- z)) in *.
+ cut (Q (Zabs p)); [ intros | apply (Z_lt_induction Q); auto with zarith ].
+ elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith.
+ unfold Q in |- *; clear Q; intros.
+ split; apply HP.
+ rewrite Zabs_eq; auto; intros.
+ elim (H (Zabs m)); intros; auto with zarith.
+ elim (Zabs_dec m); intro eq; rewrite eq; trivial.
+ rewrite Zabs_non_eq; auto with zarith.
+ rewrite Zopp_involutive; intros.
+ elim (H (Zabs m)); intros; auto with zarith.
+ elim (Zabs_dec m); intro eq; rewrite eq; trivial.
Qed.
(** To do case analysis over the sign of [z] *)
Lemma Zcase_sign :
- forall (n:Z) (P:Prop), (n = 0 -> P) -> (n > 0 -> P) -> (n < 0 -> P) -> P.
+ forall (n:Z) (P:Prop), (n = 0 -> P) -> (n > 0 -> P) -> (n < 0 -> P) -> P.
Proof.
-intros x P Hzero Hpos Hneg.
-induction x as [| p| p].
-apply Hzero; trivial.
-apply Hpos; apply Zorder.Zgt_pos_0.
-apply Hneg; apply Zorder.Zlt_neg_0.
+ intros x P Hzero Hpos Hneg.
+ induction x as [| p| p].
+ apply Hzero; trivial.
+ apply Hpos; apply Zorder.Zgt_pos_0.
+ apply Hneg; apply Zorder.Zlt_neg_0.
Qed.
Lemma sqr_pos : forall n:Z, n * n >= 0.
Proof.
-intro x.
-apply (Zcase_sign x (x * x >= 0)).
-intros H; rewrite H; omega.
-intros H; replace 0 with (0 * 0).
-apply Zmult_ge_compat; omega.
-omega.
-intros H; replace 0 with (0 * 0).
-replace (x * x) with (- x * - x).
-apply Zmult_ge_compat; omega.
-ring.
-omega.
+ intro x.
+ apply (Zcase_sign x (x * x >= 0)).
+ intros H; rewrite H; omega.
+ intros H; replace 0 with (0 * 0).
+ apply Zmult_ge_compat; omega.
+ omega.
+ intros H; replace 0 with (0 * 0).
+ replace (x * x) with (- x * - x).
+ apply Zmult_ge_compat; omega.
+ ring.
+ omega.
Qed.
(**********************************************************************)
@@ -162,8 +162,8 @@ Require Import List.
Fixpoint Zlength_aux (acc:Z) (A:Set) (l:list A) {struct l} : Z :=
match l with
- | nil => acc
- | _ :: l => Zlength_aux (Zsucc acc) A l
+ | nil => acc
+ | _ :: l => Zlength_aux (Zsucc acc) A l
end.
Definition Zlength := Zlength_aux 0.
@@ -171,42 +171,42 @@ Implicit Arguments Zlength [A].
Section Zlength_properties.
-Variable A : Set.
-
-Implicit Type l : list A.
-
-Lemma Zlength_correct : forall l, Zlength l = Z_of_nat (length l).
-Proof.
-assert (forall l (acc:Z), Zlength_aux acc A l = acc + Z_of_nat (length l)).
-simple induction l.
-simpl in |- *; auto with zarith.
-intros; simpl (length (a :: l0)) in |- *; rewrite Znat.inj_S.
-simpl in |- *; rewrite H; auto with zarith.
-unfold Zlength in |- *; intros; rewrite H; auto.
-Qed.
-
-Lemma Zlength_nil : Zlength (A:=A) nil = 0.
-Proof.
-auto.
-Qed.
-
-Lemma Zlength_cons : forall (x:A) l, Zlength (x :: l) = Zsucc (Zlength l).
-Proof.
-intros; do 2 rewrite Zlength_correct.
-simpl (length (x :: l)) in |- *; rewrite Znat.inj_S; auto.
-Qed.
-
-Lemma Zlength_nil_inv : forall l, Zlength l = 0 -> l = nil.
-Proof.
-intro l; rewrite Zlength_correct.
-case l; auto.
-intros x l'; simpl (length (x :: l')) in |- *.
-rewrite Znat.inj_S.
-intros; elimtype False; generalize (Zle_0_nat (length l')); omega.
-Qed.
+ Variable A : Set.
+
+ Implicit Type l : list A.
+
+ Lemma Zlength_correct : forall l, Zlength l = Z_of_nat (length l).
+ Proof.
+ assert (forall l (acc:Z), Zlength_aux acc A l = acc + Z_of_nat (length l)).
+ simple induction l.
+ simpl in |- *; auto with zarith.
+ intros; simpl (length (a :: l0)) in |- *; rewrite Znat.inj_S.
+ simpl in |- *; rewrite H; auto with zarith.
+ unfold Zlength in |- *; intros; rewrite H; auto.
+ Qed.
+
+ Lemma Zlength_nil : Zlength (A:=A) nil = 0.
+ Proof.
+ auto.
+ Qed.
+
+ Lemma Zlength_cons : forall (x:A) l, Zlength (x :: l) = Zsucc (Zlength l).
+ Proof.
+ intros; do 2 rewrite Zlength_correct.
+ simpl (length (x :: l)) in |- *; rewrite Znat.inj_S; auto.
+ Qed.
+
+ Lemma Zlength_nil_inv : forall l, Zlength l = 0 -> l = nil.
+ Proof.
+ intro l; rewrite Zlength_correct.
+ case l; auto.
+ intros x l'; simpl (length (x :: l')) in |- *.
+ rewrite Znat.inj_S.
+ intros; elimtype False; generalize (Zle_0_nat (length l')); omega.
+ Qed.
End Zlength_properties.
Implicit Arguments Zlength_correct [A].
Implicit Arguments Zlength_cons [A].
-Implicit Arguments Zlength_nil_inv [A]. \ No newline at end of file
+Implicit Arguments Zlength_nil_inv [A].