summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zbool.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zbool.v')
-rw-r--r--theories/ZArith/Zbool.v16
1 files changed, 14 insertions, 2 deletions
diff --git a/theories/ZArith/Zbool.v b/theories/ZArith/Zbool.v
index 7da91c44..34114d46 100644
--- a/theories/ZArith/Zbool.v
+++ b/theories/ZArith/Zbool.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Zbool.v 9245 2006-10-17 12:53:34Z notin $ *)
+(* $Id: Zbool.v 10063 2007-08-08 14:21:03Z emakarov $ *)
Require Import BinInt.
Require Import Zeven.
@@ -104,7 +104,7 @@ Qed.
Lemma Zle_bool_imp_le : forall n m:Z, Zle_bool n m = true -> (n <= m)%Z.
Proof.
- unfold Zle_bool, Zle in |- *. intros x y. unfold not in |- *.
+ unfold Zle_bool, Zle in |- *. intros x y. unfold not in |- *.
case (x ?= y)%Z; intros; discriminate.
Qed.
@@ -178,6 +178,18 @@ Proof.
intro. apply Zle_ge. apply Zle_bool_imp_le. assumption.
Qed.
+Lemma Zlt_is_lt_bool : forall n m:Z, (n < m)%Z <-> Zlt_bool n m = true.
+Proof.
+intros n m; unfold Zlt_bool, Zlt.
+destruct (n ?= m)%Z; simpl; split; now intro.
+Qed.
+
+Lemma Zgt_is_gt_bool : forall n m:Z, (n > m)%Z <-> Zgt_bool n m = true.
+Proof.
+intros n m; unfold Zgt_bool, Zgt.
+destruct (n ?= m)%Z; simpl; split; now intro.
+Qed.
+
Lemma Zlt_is_le_bool :
forall n m:Z, (n < m)%Z <-> Zle_bool n (m - 1) = true.
Proof.