summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zabs.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zabs.v')
-rw-r--r--theories/ZArith/Zabs.v114
1 files changed, 58 insertions, 56 deletions
diff --git a/theories/ZArith/Zabs.v b/theories/ZArith/Zabs.v
index fed6ad76..ed641358 100644
--- a/theories/ZArith/Zabs.v
+++ b/theories/ZArith/Zabs.v
@@ -5,11 +5,11 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zabs.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Zabs.v 9302 2006-10-27 21:21:17Z barras $ i*)
(** Binary Integers (Pierre Crégut (CNET, Lannion, France) *)
-Require Import Arith.
+Require Import Arith_base.
Require Import BinPos.
Require Import BinInt.
Require Import Zorder.
@@ -18,111 +18,113 @@ Require Import ZArith_dec.
Open Local Scope Z_scope.
(**********************************************************************)
-(** Properties of absolute value *)
+(** * Properties of absolute value *)
Lemma Zabs_eq : forall n:Z, 0 <= n -> Zabs n = n.
-intro x; destruct x; auto with arith.
-compute in |- *; intros; absurd (Gt = Gt); trivial with arith.
+Proof.
+ intro x; destruct x; auto with arith.
+ compute in |- *; intros; absurd (Gt = Gt); trivial with arith.
Qed.
Lemma Zabs_non_eq : forall n:Z, n <= 0 -> Zabs n = - n.
Proof.
-intro x; destruct x; auto with arith.
-compute in |- *; intros; absurd (Gt = Gt); trivial with arith.
+ intro x; destruct x; auto with arith.
+ compute in |- *; intros; absurd (Gt = Gt); trivial with arith.
Qed.
Theorem Zabs_Zopp : forall n:Z, Zabs (- n) = Zabs n.
Proof.
-intros z; case z; simpl in |- *; auto.
+ intros z; case z; simpl in |- *; auto.
Qed.
-(** Proving a property of the absolute value by cases *)
+(** * Proving a property of the absolute value by cases *)
Lemma Zabs_ind :
- forall (P:Z -> Prop) (n:Z),
- (n >= 0 -> P n) -> (n <= 0 -> P (- n)) -> P (Zabs n).
+ forall (P:Z -> Prop) (n:Z),
+ (n >= 0 -> P n) -> (n <= 0 -> P (- n)) -> P (Zabs n).
Proof.
-intros P x H H0; elim (Z_lt_ge_dec x 0); intro.
-assert (x <= 0). apply Zlt_le_weak; assumption.
-rewrite Zabs_non_eq. apply H0. assumption. assumption.
-rewrite Zabs_eq. apply H; assumption. apply Zge_le. assumption.
+ intros P x H H0; elim (Z_lt_ge_dec x 0); intro.
+ assert (x <= 0). apply Zlt_le_weak; assumption.
+ rewrite Zabs_non_eq. apply H0. assumption. assumption.
+ rewrite Zabs_eq. apply H; assumption. apply Zge_le. assumption.
Qed.
Theorem Zabs_intro : forall P (n:Z), P (- n) -> P n -> P (Zabs n).
-intros P z; case z; simpl in |- *; auto.
+Proof.
+ intros P z; case z; simpl in |- *; auto.
Qed.
Definition Zabs_dec : forall x:Z, {x = Zabs x} + {x = - Zabs x}.
Proof.
-intro x; destruct x; auto with arith.
+ intro x; destruct x; auto with arith.
Defined.
Lemma Zabs_pos : forall n:Z, 0 <= Zabs n.
-intro x; destruct x; auto with arith; compute in |- *; intros H; inversion H.
+ intro x; destruct x; auto with arith; compute in |- *; intros H; inversion H.
Qed.
Theorem Zabs_eq_case : forall n m:Z, Zabs n = Zabs m -> n = m \/ n = - m.
Proof.
-intros z1 z2; case z1; case z2; simpl in |- *; auto;
- try (intros; discriminate); intros p1 p2 H1; injection H1;
- (intros H2; rewrite H2); auto.
+ intros z1 z2; case z1; case z2; simpl in |- *; auto;
+ try (intros; discriminate); intros p1 p2 H1; injection H1;
+ (intros H2; rewrite H2); auto.
Qed.
-(** Triangular inequality *)
+(** * Triangular inequality *)
Hint Local Resolve Zle_neg_pos: zarith.
Theorem Zabs_triangle : forall n m:Z, Zabs (n + m) <= Zabs n + Zabs m.
Proof.
-intros z1 z2; case z1; case z2; try (simpl in |- *; auto with zarith; fail).
-intros p1 p2;
- apply Zabs_intro with (P := fun x => x <= Zabs (Zpos p2) + Zabs (Zneg p1));
- try rewrite Zopp_plus_distr; auto with zarith.
-apply Zplus_le_compat; simpl in |- *; auto with zarith.
-apply Zplus_le_compat; simpl in |- *; auto with zarith.
-intros p1 p2;
- apply Zabs_intro with (P := fun x => x <= Zabs (Zpos p2) + Zabs (Zneg p1));
- try rewrite Zopp_plus_distr; auto with zarith.
-apply Zplus_le_compat; simpl in |- *; auto with zarith.
-apply Zplus_le_compat; simpl in |- *; auto with zarith.
+ intros z1 z2; case z1; case z2; try (simpl in |- *; auto with zarith; fail).
+ intros p1 p2;
+ apply Zabs_intro with (P := fun x => x <= Zabs (Zpos p2) + Zabs (Zneg p1));
+ try rewrite Zopp_plus_distr; auto with zarith.
+ apply Zplus_le_compat; simpl in |- *; auto with zarith.
+ apply Zplus_le_compat; simpl in |- *; auto with zarith.
+ intros p1 p2;
+ apply Zabs_intro with (P := fun x => x <= Zabs (Zpos p2) + Zabs (Zneg p1));
+ try rewrite Zopp_plus_distr; auto with zarith.
+ apply Zplus_le_compat; simpl in |- *; auto with zarith.
+ apply Zplus_le_compat; simpl in |- *; auto with zarith.
Qed.
-(** Absolute value and multiplication *)
+(** * Absolute value and multiplication *)
Lemma Zsgn_Zabs : forall n:Z, n * Zsgn n = Zabs n.
Proof.
-intro x; destruct x; rewrite Zmult_comm; auto with arith.
+ intro x; destruct x; rewrite Zmult_comm; auto with arith.
Qed.
Lemma Zabs_Zsgn : forall n:Z, Zabs n * Zsgn n = n.
Proof.
-intro x; destruct x; rewrite Zmult_comm; auto with arith.
+ intro x; destruct x; rewrite Zmult_comm; auto with arith.
Qed.
Theorem Zabs_Zmult : forall n m:Z, Zabs (n * m) = Zabs n * Zabs m.
Proof.
-intros z1 z2; case z1; case z2; simpl in |- *; auto.
+ intros z1 z2; case z1; case z2; simpl in |- *; auto.
Qed.
-(** absolute value in nat is compatible with order *)
+(** * Absolute value in nat is compatible with order *)
Lemma Zabs_nat_lt :
- forall n m:Z, 0 <= n /\ n < m -> (Zabs_nat n < Zabs_nat m)%nat.
+ forall n m:Z, 0 <= n /\ n < m -> (Zabs_nat n < Zabs_nat m)%nat.
Proof.
-intros x y. case x; simpl in |- *. case y; simpl in |- *.
-
-intro. absurd (0 < 0). compute in |- *. intro H0. discriminate H0. intuition.
-intros. elim (ZL4 p). intros. rewrite H0. auto with arith.
-intros. elim (ZL4 p). intros. rewrite H0. auto with arith.
-
-case y; simpl in |- *.
-intros. absurd (Zpos p < 0). compute in |- *. intro H0. discriminate H0. intuition.
-intros. change (nat_of_P p > nat_of_P p0)%nat in |- *.
-apply nat_of_P_gt_Gt_compare_morphism.
-elim H; auto with arith. intro. exact (ZC2 p0 p).
-
-intros. absurd (Zpos p0 < Zneg p).
-compute in |- *. intro H0. discriminate H0. intuition.
-
-intros. absurd (0 <= Zneg p). compute in |- *. auto with arith. intuition.
-Qed. \ No newline at end of file
+ intros x y. case x; simpl in |- *. case y; simpl in |- *.
+
+ intro. absurd (0 < 0). compute in |- *. intro H0. discriminate H0. intuition.
+ intros. elim (ZL4 p). intros. rewrite H0. auto with arith.
+ intros. elim (ZL4 p). intros. rewrite H0. auto with arith.
+
+ case y; simpl in |- *.
+ intros. absurd (Zpos p < 0). compute in |- *. intro H0. discriminate H0. intuition.
+ intros. change (nat_of_P p > nat_of_P p0)%nat in |- *.
+ apply nat_of_P_gt_Gt_compare_morphism.
+ elim H; auto with arith. intro. exact (ZC2 p0 p).
+
+ intros. absurd (Zpos p0 < Zneg p).
+ compute in |- *. intro H0. discriminate H0. intuition.
+
+ intros. absurd (0 <= Zneg p). compute in |- *. auto with arith. intuition.
+Qed.