diff options
Diffstat (limited to 'theories/ZArith/ZOdiv.v')
-rw-r--r-- | theories/ZArith/ZOdiv.v | 953 |
1 files changed, 953 insertions, 0 deletions
diff --git a/theories/ZArith/ZOdiv.v b/theories/ZArith/ZOdiv.v new file mode 100644 index 00000000..03e061f2 --- /dev/null +++ b/theories/ZArith/ZOdiv.v @@ -0,0 +1,953 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + + +Require Import BinPos BinNat Nnat ZArith_base ROmega ZArithRing. +Require Export ZOdiv_def. +Require Zdiv. + +Open Scope Z_scope. + +(** This file provides results about the Round-Toward-Zero Euclidean + division [ZOdiv_eucl], whose projections are [ZOdiv] and [ZOmod]. + Definition of this division can be found in file [ZOdiv_def]. + + This division and the one defined in Zdiv agree only on positive + numbers. Otherwise, Zdiv performs Round-Toward-Bottom. + + The current approach is compatible with the division of usual + programming languages such as Ocaml. In addition, it has nicer + properties with respect to opposite and other usual operations. +*) + +(** Since ZOdiv and Zdiv are not meant to be used concurrently, + we reuse the same notation. *) + +Infix "/" := ZOdiv : Z_scope. +Infix "mod" := ZOmod (at level 40, no associativity) : Z_scope. + +Infix "/" := Ndiv : N_scope. +Infix "mod" := Nmod (at level 40, no associativity) : N_scope. + +(** Auxiliary results on the ad-hoc comparison [NPgeb]. *) + +Lemma NPgeb_Zge : forall (n:N)(p:positive), + NPgeb n p = true -> Z_of_N n >= Zpos p. +Proof. + destruct n as [|n]; simpl; intros. + discriminate. + red; simpl; destruct Pcompare; now auto. +Qed. + +Lemma NPgeb_Zlt : forall (n:N)(p:positive), + NPgeb n p = false -> Z_of_N n < Zpos p. +Proof. + destruct n as [|n]; simpl; intros. + red; auto. + red; simpl; destruct Pcompare; now auto. +Qed. + +(** * Relation between division on N and on Z. *) + +Lemma Ndiv_Z0div : forall a b:N, + Z_of_N (a/b) = (Z_of_N a / Z_of_N b). +Proof. + intros. + destruct a; destruct b; simpl; auto. + unfold Ndiv, ZOdiv; simpl; destruct Pdiv_eucl; auto. +Qed. + +Lemma Nmod_Z0mod : forall a b:N, + Z_of_N (a mod b) = (Z_of_N a) mod (Z_of_N b). +Proof. + intros. + destruct a; destruct b; simpl; auto. + unfold Nmod, ZOmod; simpl; destruct Pdiv_eucl; auto. +Qed. + +(** * Characterization of this euclidean division. *) + +(** First, the usual equation [a=q*b+r]. Notice that [a mod 0] + has been chosen to be [a], so this equation holds even for [b=0]. +*) + +Theorem N_div_mod_eq : forall a b, + a = (b * (Ndiv a b) + (Nmod a b))%N. +Proof. + intros; generalize (Ndiv_eucl_correct a b). + unfold Ndiv, Nmod; destruct Ndiv_eucl; simpl. + intro H; rewrite H; rewrite Nmult_comm; auto. +Qed. + +Theorem ZO_div_mod_eq : forall a b, + a = b * (ZOdiv a b) + (ZOmod a b). +Proof. + intros; generalize (ZOdiv_eucl_correct a b). + unfold ZOdiv, ZOmod; destruct ZOdiv_eucl; simpl. + intro H; rewrite H; rewrite Zmult_comm; auto. +Qed. + +(** Then, the inequalities constraining the remainder. *) + +Theorem Pdiv_eucl_remainder : forall a b:positive, + Z_of_N (snd (Pdiv_eucl a b)) < Zpos b. +Proof. + induction a; cbv beta iota delta [Pdiv_eucl]; fold Pdiv_eucl; cbv zeta. + intros b; generalize (IHa b); case Pdiv_eucl. + intros q1 r1 Hr1; simpl in Hr1. + case_eq (NPgeb (2*r1+1) b); intros; unfold snd. + romega with *. + apply NPgeb_Zlt; auto. + intros b; generalize (IHa b); case Pdiv_eucl. + intros q1 r1 Hr1; simpl in Hr1. + case_eq (NPgeb (2*r1) b); intros; unfold snd. + romega with *. + apply NPgeb_Zlt; auto. + destruct b; simpl; romega with *. +Qed. + +Theorem Nmod_lt : forall (a b:N), b<>0%N -> + (a mod b < b)%N. +Proof. + destruct b as [ |b]; intro H; try solve [elim H;auto]. + destruct a as [ |a]; try solve [compute;auto]; unfold Nmod, Ndiv_eucl. + generalize (Pdiv_eucl_remainder a b); destruct Pdiv_eucl; simpl. + romega with *. +Qed. + +(** The remainder is bounded by the divisor, in term of absolute values *) + +Theorem ZOmod_lt : forall a b:Z, b<>0 -> + Zabs (a mod b) < Zabs b. +Proof. + destruct b as [ |b|b]; intro H; try solve [elim H;auto]; + destruct a as [ |a|a]; try solve [compute;auto]; unfold ZOmod, ZOdiv_eucl; + generalize (Pdiv_eucl_remainder a b); destruct Pdiv_eucl; simpl; + try rewrite Zabs_Zopp; rewrite Zabs_eq; auto; apply Z_of_N_le_0. +Qed. + +(** The sign of the remainder is the one of [a]. Due to the possible + nullity of [a], a general result is to be stated in the following form: +*) + +Theorem ZOmod_sgn : forall a b:Z, + 0 <= Zsgn (a mod b) * Zsgn a. +Proof. + destruct b as [ |b|b]; destruct a as [ |a|a]; simpl; auto with zarith; + unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; + simpl; destruct n0; simpl; auto with zarith. +Qed. + +(** This can also be said in a simplier way: *) + +Theorem Zsgn_pos_iff : forall z, 0 <= Zsgn z <-> 0 <= z. +Proof. + destruct z; simpl; intuition auto with zarith. +Qed. + +Theorem ZOmod_sgn2 : forall a b:Z, + 0 <= (a mod b) * a. +Proof. + intros; rewrite <-Zsgn_pos_iff, Zsgn_Zmult; apply ZOmod_sgn. +Qed. + +(** Reformulation of [ZOdiv_lt] and [ZOmod_sgn] in 2 + then 4 particular cases. *) + +Theorem ZOmod_lt_pos : forall a b:Z, 0<=a -> b<>0 -> + 0 <= a mod b < Zabs b. +Proof. + intros. + assert (0 <= a mod b). + generalize (ZOmod_sgn a b). + destruct (Zle_lt_or_eq 0 a H). + rewrite <- Zsgn_pos in H1; rewrite H1; romega with *. + subst a; simpl; auto. + generalize (ZOmod_lt a b H0); romega with *. +Qed. + +Theorem ZOmod_lt_neg : forall a b:Z, a<=0 -> b<>0 -> + -Zabs b < a mod b <= 0. +Proof. + intros. + assert (a mod b <= 0). + generalize (ZOmod_sgn a b). + destruct (Zle_lt_or_eq a 0 H). + rewrite <- Zsgn_neg in H1; rewrite H1; romega with *. + subst a; simpl; auto. + generalize (ZOmod_lt a b H0); romega with *. +Qed. + +Theorem ZOmod_lt_pos_pos : forall a b:Z, 0<=a -> 0<b -> 0 <= a mod b < b. +Proof. + intros; generalize (ZOmod_lt_pos a b); romega with *. +Qed. + +Theorem ZOmod_lt_pos_neg : forall a b:Z, 0<=a -> b<0 -> 0 <= a mod b < -b. +Proof. + intros; generalize (ZOmod_lt_pos a b); romega with *. +Qed. + +Theorem ZOmod_lt_neg_pos : forall a b:Z, a<=0 -> 0<b -> -b < a mod b <= 0. +Proof. + intros; generalize (ZOmod_lt_neg a b); romega with *. +Qed. + +Theorem ZOmod_lt_neg_neg : forall a b:Z, a<=0 -> b<0 -> b < a mod b <= 0. +Proof. + intros; generalize (ZOmod_lt_neg a b); romega with *. +Qed. + +(** * Division and Opposite *) + +(* The precise equalities that are invalid with "historic" Zdiv. *) + +Theorem ZOdiv_opp_l : forall a b:Z, (-a)/b = -(a/b). +Proof. + destruct a; destruct b; simpl; auto; + unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith. +Qed. + +Theorem ZOdiv_opp_r : forall a b:Z, a/(-b) = -(a/b). +Proof. + destruct a; destruct b; simpl; auto; + unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith. +Qed. + +Theorem ZOmod_opp_l : forall a b:Z, (-a) mod b = -(a mod b). +Proof. + destruct a; destruct b; simpl; auto; + unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith. +Qed. + +Theorem ZOmod_opp_r : forall a b:Z, a mod (-b) = a mod b. +Proof. + destruct a; destruct b; simpl; auto; + unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith. +Qed. + +Theorem ZOdiv_opp_opp : forall a b:Z, (-a)/(-b) = a/b. +Proof. + destruct a; destruct b; simpl; auto; + unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith. +Qed. + +Theorem ZOmod_opp_opp : forall a b:Z, (-a) mod (-b) = -(a mod b). +Proof. + destruct a; destruct b; simpl; auto; + unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith. +Qed. + +(** * Unicity results *) + +Definition Remainder a b r := + (0 <= a /\ 0 <= r < Zabs b) \/ (a <= 0 /\ -Zabs b < r <= 0). + +Definition Remainder_alt a b r := + Zabs r < Zabs b /\ 0 <= r * a. + +Lemma Remainder_equiv : forall a b r, + Remainder a b r <-> Remainder_alt a b r. +Proof. + unfold Remainder, Remainder_alt; intuition. + romega with *. + romega with *. + rewrite <-(Zmult_opp_opp). + apply Zmult_le_0_compat; romega. + assert (0 <= Zsgn r * Zsgn a) by (rewrite <-Zsgn_Zmult, Zsgn_pos_iff; auto). + destruct r; simpl Zsgn in *; romega with *. +Qed. + +Theorem ZOdiv_mod_unique_full: + forall a b q r, Remainder a b r -> + a = b*q + r -> q = a/b /\ r = a mod b. +Proof. + destruct 1 as [(H,H0)|(H,H0)]; intros. + apply Zdiv.Zdiv_mod_unique with b; auto. + apply ZOmod_lt_pos; auto. + romega with *. + rewrite <- H1; apply ZO_div_mod_eq. + + rewrite <- (Zopp_involutive a). + rewrite ZOdiv_opp_l, ZOmod_opp_l. + generalize (Zdiv.Zdiv_mod_unique b (-q) (-a/b) (-r) (-a mod b)). + generalize (ZOmod_lt_pos (-a) b). + rewrite <-ZO_div_mod_eq, <-Zopp_mult_distr_r, <-Zopp_plus_distr, <-H1. + romega with *. +Qed. + +Theorem ZOdiv_unique_full: + forall a b q r, Remainder a b r -> + a = b*q + r -> q = a/b. +Proof. + intros; destruct (ZOdiv_mod_unique_full a b q r); auto. +Qed. + +Theorem ZOdiv_unique: + forall a b q r, 0 <= a -> 0 <= r < b -> + a = b*q + r -> q = a/b. +Proof. + intros; eapply ZOdiv_unique_full; eauto. + red; romega with *. +Qed. + +Theorem ZOmod_unique_full: + forall a b q r, Remainder a b r -> + a = b*q + r -> r = a mod b. +Proof. + intros; destruct (ZOdiv_mod_unique_full a b q r); auto. +Qed. + +Theorem ZOmod_unique: + forall a b q r, 0 <= a -> 0 <= r < b -> + a = b*q + r -> r = a mod b. +Proof. + intros; eapply ZOmod_unique_full; eauto. + red; romega with *. +Qed. + +(** * Basic values of divisions and modulo. *) + +Lemma ZOmod_0_l: forall a, 0 mod a = 0. +Proof. + destruct a; simpl; auto. +Qed. + +Lemma ZOmod_0_r: forall a, a mod 0 = a. +Proof. + destruct a; simpl; auto. +Qed. + +Lemma ZOdiv_0_l: forall a, 0/a = 0. +Proof. + destruct a; simpl; auto. +Qed. + +Lemma ZOdiv_0_r: forall a, a/0 = 0. +Proof. + destruct a; simpl; auto. +Qed. + +Lemma ZOmod_1_r: forall a, a mod 1 = 0. +Proof. + intros; symmetry; apply ZOmod_unique_full with a; auto with zarith. + rewrite Remainder_equiv; red; simpl; auto with zarith. +Qed. + +Lemma ZOdiv_1_r: forall a, a/1 = a. +Proof. + intros; symmetry; apply ZOdiv_unique_full with 0; auto with zarith. + rewrite Remainder_equiv; red; simpl; auto with zarith. +Qed. + +Hint Resolve ZOmod_0_l ZOmod_0_r ZOdiv_0_l ZOdiv_0_r ZOdiv_1_r ZOmod_1_r + : zarith. + +Lemma ZOdiv_1_l: forall a, 1 < a -> 1/a = 0. +Proof. + intros; symmetry; apply ZOdiv_unique with 1; auto with zarith. +Qed. + +Lemma ZOmod_1_l: forall a, 1 < a -> 1 mod a = 1. +Proof. + intros; symmetry; apply ZOmod_unique with 0; auto with zarith. +Qed. + +Lemma ZO_div_same : forall a:Z, a<>0 -> a/a = 1. +Proof. + intros; symmetry; apply ZOdiv_unique_full with 0; auto with *. + rewrite Remainder_equiv; red; simpl; romega with *. +Qed. + +Lemma ZO_mod_same : forall a, a mod a = 0. +Proof. + destruct a; intros; symmetry. + compute; auto. + apply ZOmod_unique with 1; auto with *; romega with *. + apply ZOmod_unique_full with 1; auto with *; red; romega with *. +Qed. + +Lemma ZO_mod_mult : forall a b, (a*b) mod b = 0. +Proof. + intros a b; destruct (Z_eq_dec b 0) as [Hb|Hb]. + subst; simpl; rewrite ZOmod_0_r; auto with zarith. + symmetry; apply ZOmod_unique_full with a; [ red; romega with * | ring ]. +Qed. + +Lemma ZO_div_mult : forall a b:Z, b <> 0 -> (a*b)/b = a. +Proof. + intros; symmetry; apply ZOdiv_unique_full with 0; auto with zarith; + [ red; romega with * | ring]. +Qed. + +(** * Order results about ZOmod and ZOdiv *) + +(* Division of positive numbers is positive. *) + +Lemma ZO_div_pos: forall a b, 0 <= a -> 0 <= b -> 0 <= a/b. +Proof. + intros. + destruct (Zle_lt_or_eq 0 b H0). + assert (H2:=ZOmod_lt_pos_pos a b H H1). + rewrite (ZO_div_mod_eq a b) in H. + destruct (Z_lt_le_dec (a/b) 0); auto. + assert (b*(a/b) <= -b). + replace (-b) with (b*-1); [ | ring]. + apply Zmult_le_compat_l; auto with zarith. + romega. + subst b; rewrite ZOdiv_0_r; auto. +Qed. + +(** As soon as the divisor is greater or equal than 2, + the division is strictly decreasing. *) + +Lemma ZO_div_lt : forall a b:Z, 0 < a -> 2 <= b -> a/b < a. +Proof. + intros. + assert (Hb : 0 < b) by romega. + assert (H1 : 0 <= a/b) by (apply ZO_div_pos; auto with zarith). + assert (H2 : 0 <= a mod b < b) by (apply ZOmod_lt_pos_pos; auto with zarith). + destruct (Zle_lt_or_eq 0 (a/b) H1) as [H3|H3]; [ | rewrite <- H3; auto]. + pattern a at 2; rewrite (ZO_div_mod_eq a b). + apply Zlt_le_trans with (2*(a/b)). + romega. + apply Zle_trans with (b*(a/b)). + apply Zmult_le_compat_r; auto. + romega. +Qed. + +(** A division of a small number by a bigger one yields zero. *) + +Theorem ZOdiv_small: forall a b, 0 <= a < b -> a/b = 0. +Proof. + intros a b H; apply sym_equal; apply ZOdiv_unique with a; auto with zarith. +Qed. + +(** Same situation, in term of modulo: *) + +Theorem ZOmod_small: forall a n, 0 <= a < n -> a mod n = a. +Proof. + intros a b H; apply sym_equal; apply ZOmod_unique with 0; auto with zarith. +Qed. + +(** [Zge] is compatible with a positive division. *) + +Lemma ZO_div_monotone_pos : forall a b c:Z, 0<=c -> 0<=a<=b -> a/c <= b/c. +Proof. + intros. + destruct H0. + destruct (Zle_lt_or_eq 0 c H); + [ clear H | subst c; do 2 rewrite ZOdiv_0_r; auto]. + generalize (ZO_div_mod_eq a c). + generalize (ZOmod_lt_pos_pos a c H0 H2). + generalize (ZO_div_mod_eq b c). + generalize (ZOmod_lt_pos_pos b c (Zle_trans _ _ _ H0 H1) H2). + intros. + elim (Z_le_gt_dec (a / c) (b / c)); auto with zarith. + intro. + absurd (a - b >= 1). + omega. + replace (a-b) with (c * (a/c-b/c) + a mod c - b mod c) by + (symmetry; pattern a at 1; rewrite H5; pattern b at 1; rewrite H3; ring). + assert (c * (a / c - b / c) >= c * 1). + apply Zmult_ge_compat_l. + omega. + omega. + assert (c * 1 = c). + ring. + omega. +Qed. + +Lemma ZO_div_monotone : forall a b c, 0<=c -> a<=b -> a/c <= b/c. +Proof. + intros. + destruct (Z_le_gt_dec 0 a). + apply ZO_div_monotone_pos; auto with zarith. + destruct (Z_le_gt_dec 0 b). + apply Zle_trans with 0. + apply Zle_left_rev. + simpl. + rewrite <- ZOdiv_opp_l. + apply ZO_div_pos; auto with zarith. + apply ZO_div_pos; auto with zarith. + rewrite <-(Zopp_involutive a), (ZOdiv_opp_l (-a)). + rewrite <-(Zopp_involutive b), (ZOdiv_opp_l (-b)). + generalize (ZO_div_monotone_pos (-b) (-a) c H). + romega. +Qed. + +(** With our choice of division, rounding of (a/b) is always done toward zero: *) + +Lemma ZO_mult_div_le : forall a b:Z, 0 <= a -> 0 <= b*(a/b) <= a. +Proof. + intros a b Ha. + destruct b as [ |b|b]. + simpl; auto with zarith. + split. + apply Zmult_le_0_compat; auto with zarith. + apply ZO_div_pos; auto with zarith. + generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_pos_pos a (Zpos b) Ha); romega with *. + change (Zneg b) with (-Zpos b); rewrite ZOdiv_opp_r, Zmult_opp_opp. + split. + apply Zmult_le_0_compat; auto with zarith. + apply ZO_div_pos; auto with zarith. + generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_pos_pos a (Zpos b) Ha); romega with *. +Qed. + +Lemma ZO_mult_div_ge : forall a b:Z, a <= 0 -> a <= b*(a/b) <= 0. +Proof. + intros a b Ha. + destruct b as [ |b|b]. + simpl; auto with zarith. + split. + generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_neg_pos a (Zpos b) Ha); romega with *. + apply Zle_left_rev; unfold Zplus. + rewrite Zopp_mult_distr_r, <-ZOdiv_opp_l. + apply Zmult_le_0_compat; auto with zarith. + apply ZO_div_pos; auto with zarith. + change (Zneg b) with (-Zpos b); rewrite ZOdiv_opp_r, Zmult_opp_opp. + split. + generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_neg_pos a (Zpos b) Ha); romega with *. + apply Zle_left_rev; unfold Zplus. + rewrite Zopp_mult_distr_r, <-ZOdiv_opp_l. + apply Zmult_le_0_compat; auto with zarith. + apply ZO_div_pos; auto with zarith. +Qed. + +(** The previous inequalities between [b*(a/b)] and [a] are exact + iff the modulo is zero. *) + +Lemma ZO_div_exact_full_1 : forall a b:Z, a = b*(a/b) -> a mod b = 0. +Proof. + intros; generalize (ZO_div_mod_eq a b); romega. +Qed. + +Lemma ZO_div_exact_full_2 : forall a b:Z, a mod b = 0 -> a = b*(a/b). +Proof. + intros; generalize (ZO_div_mod_eq a b); romega. +Qed. + +(** A modulo cannot grow beyond its starting point. *) + +Theorem ZOmod_le: forall a b, 0 <= a -> 0 <= b -> a mod b <= a. +Proof. + intros a b H1 H2. + destruct (Zle_lt_or_eq _ _ H2). + case (Zle_or_lt b a); intros H3. + case (ZOmod_lt_pos_pos a b); auto with zarith. + rewrite ZOmod_small; auto with zarith. + subst; rewrite ZOmod_0_r; auto with zarith. +Qed. + +(** Some additionnal inequalities about Zdiv. *) + +Theorem ZOdiv_le_upper_bound: + forall a b q, 0 <= a -> 0 < b -> a <= q*b -> a/b <= q. +Proof. + intros a b q H1 H2 H3. + apply Zmult_le_reg_r with b; auto with zarith. + apply Zle_trans with (2 := H3). + pattern a at 2; rewrite (ZO_div_mod_eq a b); auto with zarith. + rewrite (Zmult_comm b); case (ZOmod_lt_pos_pos a b); auto with zarith. +Qed. + +Theorem ZOdiv_lt_upper_bound: + forall a b q, 0 <= a -> 0 < b -> a < q*b -> a/b < q. +Proof. + intros a b q H1 H2 H3. + apply Zmult_lt_reg_r with b; auto with zarith. + apply Zle_lt_trans with (2 := H3). + pattern a at 2; rewrite (ZO_div_mod_eq a b); auto with zarith. + rewrite (Zmult_comm b); case (ZOmod_lt_pos_pos a b); auto with zarith. +Qed. + +Theorem ZOdiv_le_lower_bound: + forall a b q, 0 <= a -> 0 < b -> q*b <= a -> q <= a/b. +Proof. + intros a b q H1 H2 H3. + assert (q < a / b + 1); auto with zarith. + apply Zmult_lt_reg_r with b; auto with zarith. + apply Zle_lt_trans with (1 := H3). + pattern a at 1; rewrite (ZO_div_mod_eq a b); auto with zarith. + rewrite Zmult_plus_distr_l; rewrite (Zmult_comm b); case (ZOmod_lt_pos_pos a b); + auto with zarith. +Qed. + +Theorem ZOdiv_sgn: forall a b, + 0 <= Zsgn (a/b) * Zsgn a * Zsgn b. +Proof. + destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith; + unfold ZOdiv; simpl; destruct Pdiv_eucl; simpl; destruct n; simpl; auto with zarith. +Qed. + +(** * Relations between usual operations and Zmod and Zdiv *) + +(** First, a result that used to be always valid with Zdiv, + but must be restricted here. + For instance, now (9+(-5)*2) mod 2 = -1 <> 1 = 9 mod 2 *) + +Lemma ZO_mod_plus : forall a b c:Z, + 0 <= (a+b*c) * a -> + (a + b * c) mod c = a mod c. +Proof. + intros; destruct (Z_eq_dec a 0) as [Ha|Ha]. + subst; simpl; rewrite ZOmod_0_l; apply ZO_mod_mult. + intros; destruct (Z_eq_dec c 0) as [Hc|Hc]. + subst; do 2 rewrite ZOmod_0_r; romega. + symmetry; apply ZOmod_unique_full with (a/c+b); auto with zarith. + rewrite Remainder_equiv; split. + apply ZOmod_lt; auto. + apply Zmult_le_0_reg_r with (a*a); eauto. + destruct a; simpl; auto with zarith. + replace ((a mod c)*(a+b*c)*(a*a)) with (((a mod c)*a)*((a+b*c)*a)) by ring. + apply Zmult_le_0_compat; auto. + apply ZOmod_sgn2. + rewrite Zmult_plus_distr_r, Zmult_comm. + generalize (ZO_div_mod_eq a c); romega. +Qed. + +Lemma ZO_div_plus : forall a b c:Z, + 0 <= (a+b*c) * a -> c<>0 -> + (a + b * c) / c = a / c + b. +Proof. + intros; destruct (Z_eq_dec a 0) as [Ha|Ha]. + subst; simpl; apply ZO_div_mult; auto. + symmetry. + apply ZOdiv_unique_full with (a mod c); auto with zarith. + rewrite Remainder_equiv; split. + apply ZOmod_lt; auto. + apply Zmult_le_0_reg_r with (a*a); eauto. + destruct a; simpl; auto with zarith. + replace ((a mod c)*(a+b*c)*(a*a)) with (((a mod c)*a)*((a+b*c)*a)) by ring. + apply Zmult_le_0_compat; auto. + apply ZOmod_sgn2. + rewrite Zmult_plus_distr_r, Zmult_comm. + generalize (ZO_div_mod_eq a c); romega. +Qed. + +Theorem ZO_div_plus_l: forall a b c : Z, + 0 <= (a*b+c)*c -> b<>0 -> + b<>0 -> (a * b + c) / b = a + c / b. +Proof. + intros a b c; rewrite Zplus_comm; intros; rewrite ZO_div_plus; + try apply Zplus_comm; auto with zarith. +Qed. + +(** Cancellations. *) + +Lemma ZOdiv_mult_cancel_r : forall a b c:Z, + c<>0 -> (a*c)/(b*c) = a/b. +Proof. + intros a b c Hc. + destruct (Z_eq_dec b 0). + subst; simpl; do 2 rewrite ZOdiv_0_r; auto. + symmetry. + apply ZOdiv_unique_full with ((a mod b)*c); auto with zarith. + rewrite Remainder_equiv. + split. + do 2 rewrite Zabs_Zmult. + apply Zmult_lt_compat_r. + romega with *. + apply ZOmod_lt; auto. + replace ((a mod b)*c*(a*c)) with (((a mod b)*a)*(c*c)) by ring. + apply Zmult_le_0_compat. + apply ZOmod_sgn2. + destruct c; simpl; auto with zarith. + pattern a at 1; rewrite (ZO_div_mod_eq a b); ring. +Qed. + +Lemma ZOdiv_mult_cancel_l : forall a b c:Z, + c<>0 -> (c*a)/(c*b) = a/b. +Proof. + intros. + rewrite (Zmult_comm c a); rewrite (Zmult_comm c b). + apply ZOdiv_mult_cancel_r; auto. +Qed. + +Lemma ZOmult_mod_distr_l: forall a b c, + (c*a) mod (c*b) = c * (a mod b). +Proof. + intros; destruct (Z_eq_dec c 0) as [Hc|Hc]. + subst; simpl; rewrite ZOmod_0_r; auto. + destruct (Z_eq_dec b 0) as [Hb|Hb]. + subst; repeat rewrite Zmult_0_r || rewrite ZOmod_0_r; auto. + assert (c*b <> 0). + contradict Hc; eapply Zmult_integral_l; eauto. + rewrite (Zplus_minus_eq _ _ _ (ZO_div_mod_eq (c*a) (c*b))). + rewrite (Zplus_minus_eq _ _ _ (ZO_div_mod_eq a b)). + rewrite ZOdiv_mult_cancel_l; auto with zarith. + ring. +Qed. + +Lemma ZOmult_mod_distr_r: forall a b c, + (a*c) mod (b*c) = (a mod b) * c. +Proof. + intros; repeat rewrite (fun x => (Zmult_comm x c)). + apply ZOmult_mod_distr_l; auto. +Qed. + +(** Operations modulo. *) + +Theorem ZOmod_mod: forall a n, (a mod n) mod n = a mod n. +Proof. + intros. + generalize (ZOmod_sgn2 a n). + pattern a at 2 4; rewrite (ZO_div_mod_eq a n); auto with zarith. + rewrite Zplus_comm; rewrite (Zmult_comm n). + intros. + apply sym_equal; apply ZO_mod_plus; auto with zarith. + rewrite Zmult_comm; auto. +Qed. + +Theorem ZOmult_mod: forall a b n, + (a * b) mod n = ((a mod n) * (b mod n)) mod n. +Proof. + intros. + generalize (Zmult_le_0_compat _ _ (ZOmod_sgn2 a n) (ZOmod_sgn2 b n)). + pattern a at 2 3; rewrite (ZO_div_mod_eq a n); auto with zarith. + pattern b at 2 3; rewrite (ZO_div_mod_eq b n); auto with zarith. + set (A:=a mod n); set (B:=b mod n); set (A':=a/n); set (B':=b/n). + replace (A*(n*A'+A)*(B*(n*B'+B))) with (((n*A' + A) * (n*B' + B))*(A*B)) + by ring. + replace ((n*A' + A) * (n*B' + B)) + with (A*B + (A'*B+B'*A+n*A'*B')*n) by ring. + intros. + apply ZO_mod_plus; auto with zarith. +Qed. + +(** addition and modulo + + Generally speaking, unlike with Zdiv, we don't have + (a+b) mod n = (a mod n + b mod n) mod n + for any a and b. + For instance, take (8 + (-10)) mod 3 = -2 whereas + (8 mod 3 + (-10 mod 3)) mod 3 = 1. *) + +Theorem ZOplus_mod: forall a b n, + 0 <= a * b -> + (a + b) mod n = (a mod n + b mod n) mod n. +Proof. + assert (forall a b n, 0<a -> 0<b -> + (a + b) mod n = (a mod n + b mod n) mod n). + intros a b n Ha Hb. + assert (H : 0<=a+b) by (romega with * ); revert H. + pattern a at 1 2; rewrite (ZO_div_mod_eq a n); auto with zarith. + pattern b at 1 2; rewrite (ZO_div_mod_eq b n); auto with zarith. + replace ((n * (a / n) + a mod n) + (n * (b / n) + b mod n)) + with ((a mod n + b mod n) + (a / n + b / n) * n) by ring. + intros. + apply ZO_mod_plus; auto with zarith. + apply Zmult_le_0_compat; auto with zarith. + apply Zplus_le_0_compat. + apply Zmult_le_reg_r with a; auto with zarith. + simpl; apply ZOmod_sgn2; auto. + apply Zmult_le_reg_r with b; auto with zarith. + simpl; apply ZOmod_sgn2; auto. + (* general situation *) + intros a b n Hab. + destruct (Z_eq_dec a 0). + subst; simpl; symmetry; apply ZOmod_mod. + destruct (Z_eq_dec b 0). + subst; simpl; do 2 rewrite Zplus_0_r; symmetry; apply ZOmod_mod. + assert (0<a /\ 0<b \/ a<0 /\ b<0). + destruct a; destruct b; simpl in *; intuition; romega with *. + destruct H0. + apply H; intuition. + rewrite <-(Zopp_involutive a), <-(Zopp_involutive b). + rewrite <- Zopp_plus_distr; rewrite ZOmod_opp_l. + rewrite (ZOmod_opp_l (-a)),(ZOmod_opp_l (-b)). + match goal with |- _ = (-?x+-?y) mod n => + rewrite <-(Zopp_plus_distr x y), ZOmod_opp_l end. + f_equal; apply H; auto with zarith. +Qed. + +Lemma ZOplus_mod_idemp_l: forall a b n, + 0 <= a * b -> + (a mod n + b) mod n = (a + b) mod n. +Proof. + intros. + rewrite ZOplus_mod. + rewrite ZOmod_mod. + symmetry. + apply ZOplus_mod; auto. + destruct (Z_eq_dec a 0). + subst; rewrite ZOmod_0_l; auto. + destruct (Z_eq_dec b 0). + subst; rewrite Zmult_0_r; auto with zarith. + apply Zmult_le_reg_r with (a*b). + assert (a*b <> 0). + intro Hab. + rewrite (Zmult_integral_l _ _ n1 Hab) in n0; auto with zarith. + auto with zarith. + simpl. + replace (a mod n * b * (a*b)) with ((a mod n * a)*(b*b)) by ring. + apply Zmult_le_0_compat. + apply ZOmod_sgn2. + destruct b; simpl; auto with zarith. +Qed. + +Lemma ZOplus_mod_idemp_r: forall a b n, + 0 <= a*b -> + (b + a mod n) mod n = (b + a) mod n. +Proof. + intros. + rewrite Zplus_comm, (Zplus_comm b a). + apply ZOplus_mod_idemp_l; auto. +Qed. + +Lemma ZOmult_mod_idemp_l: forall a b n, (a mod n * b) mod n = (a * b) mod n. +Proof. + intros; rewrite ZOmult_mod, ZOmod_mod, <- ZOmult_mod; auto. +Qed. + +Lemma ZOmult_mod_idemp_r: forall a b n, (b * (a mod n)) mod n = (b * a) mod n. +Proof. + intros; rewrite ZOmult_mod, ZOmod_mod, <- ZOmult_mod; auto. +Qed. + +(** Unlike with Zdiv, the following result is true without restrictions. *) + +Lemma ZOdiv_ZOdiv : forall a b c, (a/b)/c = a/(b*c). +Proof. + (* particular case: a, b, c positive *) + assert (forall a b c, a>0 -> b>0 -> c>0 -> (a/b)/c = a/(b*c)). + intros a b c H H0 H1. + pattern a at 2;rewrite (ZO_div_mod_eq a b). + pattern (a/b) at 2;rewrite (ZO_div_mod_eq (a/b) c). + replace (b * (c * (a / b / c) + (a / b) mod c) + a mod b) with + ((a / b / c)*(b * c) + (b * ((a / b) mod c) + a mod b)) by ring. + assert (b*c<>0). + intro H2; + assert (H3: c <> 0) by auto with zarith; + rewrite (Zmult_integral_l _ _ H3 H2) in H0; auto with zarith. + assert (0<=a/b) by (apply (ZO_div_pos a b); auto with zarith). + assert (0<=a mod b < b) by (apply ZOmod_lt_pos_pos; auto with zarith). + assert (0<=(a/b) mod c < c) by + (apply ZOmod_lt_pos_pos; auto with zarith). + rewrite ZO_div_plus_l; auto with zarith. + rewrite (ZOdiv_small (b * ((a / b) mod c) + a mod b)). + ring. + split. + apply Zplus_le_0_compat;auto with zarith. + apply Zle_lt_trans with (b * ((a / b) mod c) + (b-1)). + apply Zplus_le_compat;auto with zarith. + apply Zle_lt_trans with (b * (c-1) + (b - 1)). + apply Zplus_le_compat;auto with zarith. + replace (b * (c - 1) + (b - 1)) with (b*c-1);try ring;auto with zarith. + repeat (apply Zmult_le_0_compat || apply Zplus_le_0_compat); auto with zarith. + apply (ZO_div_pos (a/b) c); auto with zarith. + (* b c positive, a general *) + assert (forall a b c, b>0 -> c>0 -> (a/b)/c = a/(b*c)). + intros; destruct a as [ |a|a]; try reflexivity. + apply H; auto with zarith. + change (Zneg a) with (-Zpos a); repeat rewrite ZOdiv_opp_l. + f_equal; apply H; auto with zarith. + (* c positive, a b general *) + assert (forall a b c, c>0 -> (a/b)/c = a/(b*c)). + intros; destruct b as [ |b|b]. + repeat rewrite ZOdiv_0_r; reflexivity. + apply H0; auto with zarith. + change (Zneg b) with (-Zpos b); + repeat (rewrite ZOdiv_opp_r || rewrite ZOdiv_opp_l || rewrite <- Zopp_mult_distr_l). + f_equal; apply H0; auto with zarith. + (* a b c general *) + intros; destruct c as [ |c|c]. + rewrite Zmult_0_r; repeat rewrite ZOdiv_0_r; reflexivity. + apply H1; auto with zarith. + change (Zneg c) with (-Zpos c); + rewrite <- Zopp_mult_distr_r; do 2 rewrite ZOdiv_opp_r. + f_equal; apply H1; auto with zarith. +Qed. + +(** A last inequality: *) + +Theorem ZOdiv_mult_le: + forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a/b) <= (c*a)/b. +Proof. + intros a b c Ha Hb Hc. + destruct (Zle_lt_or_eq _ _ Ha); + [ | subst; rewrite ZOdiv_0_l, Zmult_0_r, ZOdiv_0_l; auto]. + destruct (Zle_lt_or_eq _ _ Hb); + [ | subst; rewrite ZOdiv_0_r, ZOdiv_0_r, Zmult_0_r; auto]. + destruct (Zle_lt_or_eq _ _ Hc); + [ | subst; rewrite ZOdiv_0_l; auto]. + case (ZOmod_lt_pos_pos a b); auto with zarith; intros Hu1 Hu2. + case (ZOmod_lt_pos_pos c b); auto with zarith; intros Hv1 Hv2. + apply Zmult_le_reg_r with b; auto with zarith. + rewrite <- Zmult_assoc. + replace (a / b * b) with (a - a mod b). + replace (c * a / b * b) with (c * a - (c * a) mod b). + rewrite Zmult_minus_distr_l. + unfold Zminus; apply Zplus_le_compat_l. + match goal with |- - ?X <= -?Y => assert (Y <= X); auto with zarith end. + apply Zle_trans with ((c mod b) * (a mod b)); auto with zarith. + rewrite ZOmult_mod; auto with zarith. + apply (ZOmod_le ((c mod b) * (a mod b)) b); auto with zarith. + apply Zmult_le_compat_r; auto with zarith. + apply (ZOmod_le c b); auto. + pattern (c * a) at 1; rewrite (ZO_div_mod_eq (c * a) b); try ring; + auto with zarith. + pattern a at 1; rewrite (ZO_div_mod_eq a b); try ring; auto with zarith. +Qed. + +(** ZOmod is related to divisibility (see more in Znumtheory) *) + +Lemma ZOmod_divides : forall a b, + a mod b = 0 <-> exists c, a = b*c. +Proof. + split; intros. + exists (a/b). + pattern a at 1; rewrite (ZO_div_mod_eq a b). + rewrite H; auto with zarith. + destruct H as [c Hc]. + destruct (Z_eq_dec b 0). + subst b; simpl in *; subst a; auto. + symmetry. + apply ZOmod_unique_full with c; auto with zarith. + red; romega with *. +Qed. + +(** * Interaction with "historic" Zdiv *) + +(** They agree at least on positive numbers: *) + +Theorem ZOdiv_eucl_Zdiv_eucl_pos : forall a b:Z, 0 <= a -> 0 < b -> + a/b = Zdiv.Zdiv a b /\ a mod b = Zdiv.Zmod a b. +Proof. + intros. + apply Zdiv.Zdiv_mod_unique with b. + apply ZOmod_lt_pos; auto with zarith. + rewrite Zabs_eq; auto with *; apply Zdiv.Z_mod_lt; auto with *. + rewrite <- Zdiv.Z_div_mod_eq; auto with *. + symmetry; apply ZO_div_mod_eq; auto with *. +Qed. + +Theorem ZOdiv_Zdiv_pos : forall a b, 0 <= a -> 0 <= b -> + a/b = Zdiv.Zdiv a b. +Proof. + intros a b Ha Hb. + destruct (Zle_lt_or_eq _ _ Hb). + generalize (ZOdiv_eucl_Zdiv_eucl_pos a b Ha H); intuition. + subst; rewrite ZOdiv_0_r, Zdiv.Zdiv_0_r; reflexivity. +Qed. + +Theorem ZOmod_Zmod_pos : forall a b, 0 <= a -> 0 < b -> + a mod b = Zdiv.Zmod a b. +Proof. + intros a b Ha Hb; generalize (ZOdiv_eucl_Zdiv_eucl_pos a b Ha Hb); + intuition. +Qed. + +(** Modulos are null at the same places *) + +Theorem ZOmod_Zmod_zero : forall a b, b<>0 -> + (a mod b = 0 <-> Zdiv.Zmod a b = 0). +Proof. + intros. + rewrite ZOmod_divides, Zdiv.Zmod_divides; intuition. +Qed. |