summaryrefslogtreecommitdiff
path: root/theories/ZArith/ZArith_dec.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/ZArith_dec.v')
-rw-r--r--theories/ZArith/ZArith_dec.v102
1 files changed, 35 insertions, 67 deletions
diff --git a/theories/ZArith/ZArith_dec.v b/theories/ZArith/ZArith_dec.v
index b6766640..ff4f5e7b 100644
--- a/theories/ZArith/ZArith_dec.v
+++ b/theories/ZArith/ZArith_dec.v
@@ -1,19 +1,17 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ZArith_dec.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Import Sumbool.
Require Import BinInt.
Require Import Zorder.
Require Import Zcompare.
-Open Local Scope Z_scope.
+Local Open Scope Z_scope.
(* begin hide *)
(* Trivial, to deprecate? *)
@@ -23,68 +21,43 @@ Proof.
Defined.
(* end hide *)
-Lemma Zcompare_rect :
- forall (P:Type) (n m:Z),
- ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P.
+Lemma Zcompare_rect (P:Type) (n m:Z) :
+ ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P.
Proof.
- intros * H1 H2 H3.
+ intros H1 H2 H3.
destruct (n ?= m); auto.
Defined.
-Lemma Zcompare_rec :
- forall (P:Set) (n m:Z),
- ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P.
-Proof.
- intro; apply Zcompare_rect.
-Defined.
+Lemma Zcompare_rec (P:Set) (n m:Z) :
+ ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P.
+Proof. apply Zcompare_rect. Defined.
+
+Notation Z_eq_dec := Z.eq_dec (compat "8.3").
Section decidability.
Variables x y : Z.
- (** * Decidability of equality on binary integers *)
-
- Definition Z_eq_dec : {x = y} + {x <> y}.
- Proof.
- decide equality; apply positive_eq_dec.
- Defined.
-
(** * Decidability of order on binary integers *)
Definition Z_lt_dec : {x < y} + {~ x < y}.
Proof.
- unfold Zlt in |- *.
- apply Zcompare_rec with (n := x) (m := y); intro H.
- right. rewrite H. discriminate.
- left; assumption.
- right. rewrite H. discriminate.
+ unfold Z.lt; case Z.compare; (now left) || (now right).
Defined.
Definition Z_le_dec : {x <= y} + {~ x <= y}.
Proof.
- unfold Zle in |- *.
- apply Zcompare_rec with (n := x) (m := y); intro H.
- left. rewrite H. discriminate.
- left. rewrite H. discriminate.
- right. tauto.
+ unfold Z.le; case Z.compare; (now left) || (right; tauto).
Defined.
Definition Z_gt_dec : {x > y} + {~ x > y}.
Proof.
- unfold Zgt in |- *.
- apply Zcompare_rec with (n := x) (m := y); intro H.
- right. rewrite H. discriminate.
- right. rewrite H. discriminate.
- left; assumption.
+ unfold Z.gt; case Z.compare; (now left) || (now right).
Defined.
Definition Z_ge_dec : {x >= y} + {~ x >= y}.
Proof.
- unfold Zge in |- *.
- apply Zcompare_rec with (n := x) (m := y); intro H.
- left. rewrite H. discriminate.
- right. tauto.
- left. rewrite H. discriminate.
+ unfold Z.ge; case Z.compare; (now left) || (right; tauto).
Defined.
Definition Z_lt_ge_dec : {x < y} + {x >= y}.
@@ -94,16 +67,15 @@ Section decidability.
Lemma Z_lt_le_dec : {x < y} + {y <= x}.
Proof.
- intros.
elim Z_lt_ge_dec.
- intros; left; assumption.
- intros; right; apply Zge_le; assumption.
+ * now left.
+ * right; now apply Z.ge_le.
Defined.
Definition Z_le_gt_dec : {x <= y} + {x > y}.
Proof.
elim Z_le_dec; auto with arith.
- intro. right. apply Znot_le_gt; auto with arith.
+ intro. right. Z.swap_greater. now apply Z.nle_gt.
Defined.
Definition Z_gt_le_dec : {x > y} + {x <= y}.
@@ -114,15 +86,15 @@ Section decidability.
Definition Z_ge_lt_dec : {x >= y} + {x < y}.
Proof.
elim Z_ge_dec; auto with arith.
- intro. right. apply Znot_ge_lt; auto with arith.
+ intro. right. Z.swap_greater. now apply Z.lt_nge.
Defined.
Definition Z_le_lt_eq_dec : x <= y -> {x < y} + {x = y}.
Proof.
intro H.
apply Zcompare_rec with (n := x) (m := y).
- intro. right. elim (Zcompare_Eq_iff_eq x y); auto with arith.
- intro. left. elim (Zcompare_Eq_iff_eq x y); auto with arith.
+ intro. right. elim (Z.compare_eq_iff x y); auto with arith.
+ intro. left. elim (Z.compare_eq_iff x y); auto with arith.
intro H1. absurd (x > y); auto with arith.
Defined.
@@ -139,8 +111,8 @@ Proof.
assumption.
intro.
right.
- apply Zle_lt_trans with (m := x).
- apply Zge_le.
+ apply Z.le_lt_trans with (m := x).
+ apply Z.ge_le.
assumption.
assumption.
Defined.
@@ -149,20 +121,16 @@ Lemma Zlt_cotrans_pos : forall n m:Z, 0 < n + m -> {0 < n} + {0 < m}.
Proof.
intros x y H.
case (Zlt_cotrans 0 (x + y) H x).
- intro.
- left.
- assumption.
- intro.
- right.
- apply Zplus_lt_reg_l with (p := x).
- rewrite Zplus_0_r.
- assumption.
+ - now left.
+ - right.
+ apply Z.add_lt_mono_l with (p := x).
+ now rewrite Z.add_0_r.
Defined.
Lemma Zlt_cotrans_neg : forall n m:Z, n + m < 0 -> {n < 0} + {m < 0}.
Proof.
intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy;
- [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ];
+ [ right; apply Z.add_lt_mono_l with (p := x); rewrite Z.add_0_r | left ];
assumption.
Defined.
@@ -174,7 +142,7 @@ Proof.
left.
assumption.
intro H0.
- generalize (Zge_le _ _ H0).
+ generalize (Z.ge_le _ _ H0).
intro.
case (Z_le_lt_eq_dec _ _ H1).
intro.
@@ -183,7 +151,7 @@ Proof.
intro.
apply False_rec.
apply H.
- symmetry in |- *.
+ symmetry .
assumption.
Defined.
@@ -196,17 +164,17 @@ Proof.
left.
assumption.
intro H.
- generalize (Zge_le _ _ H).
+ generalize (Z.ge_le _ _ H).
intro H0.
case (Z_le_lt_eq_dec y x H0).
intro H1.
left.
right.
- apply Zlt_gt.
+ apply Z.lt_gt.
assumption.
intro.
right.
- symmetry in |- *.
+ symmetry .
assumption.
Defined.
@@ -214,7 +182,7 @@ Defined.
Lemma Z_dec' : forall n m:Z, {n < m} + {m < n} + {n = m}.
Proof.
intros x y.
- case (Z_eq_dec x y); intro H;
+ case (Z.eq_dec x y); intro H;
[ right; assumption | left; apply (not_Zeq_inf _ _ H) ].
Defined.
@@ -222,12 +190,12 @@ Defined.
(* To deprecate ? *)
Corollary Z_zerop : forall x:Z, {x = 0} + {x <> 0}.
Proof.
- exact (fun x:Z => Z_eq_dec x 0).
+ exact (fun x:Z => Z.eq_dec x 0).
Defined.
Corollary Z_notzerop : forall (x:Z), {x <> 0} + {x = 0}.
Proof (fun x => sumbool_not _ _ (Z_zerop x)).
Corollary Z_noteq_dec : forall (x y:Z), {x <> y} + {x = y}.
-Proof (fun x y => sumbool_not _ _ (Z_eq_dec x y)).
+Proof (fun x y => sumbool_not _ _ (Z.eq_dec x y)).
(* end hide *)