diff options
Diffstat (limited to 'theories/ZArith/Wf_Z.v')
-rw-r--r-- | theories/ZArith/Wf_Z.v | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/ZArith/Wf_Z.v b/theories/ZArith/Wf_Z.v index 1d7948a5..46f64c88 100644 --- a/theories/ZArith/Wf_Z.v +++ b/theories/ZArith/Wf_Z.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Wf_Z.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id$ i*) Require Import BinInt. Require Import Zcompare. @@ -40,7 +40,7 @@ Proof. intro x; destruct x; intros; [ exists 0%nat; auto with arith | specialize (ZL4 p); intros Hp; elim Hp; intros; exists (S x); intros; - simpl in |- *; specialize (nat_of_P_o_P_of_succ_nat_eq_succ x); + simpl in |- *; specialize (nat_of_P_o_P_of_succ_nat_eq_succ x); intro Hx0; rewrite <- H0 in Hx0; apply f_equal with (f := Zpos); apply nat_of_P_inj; auto with arith | absurd (0 <= Zneg p); @@ -120,13 +120,13 @@ Proof. | assumption ]. Qed. -Section Efficient_Rec. +Section Efficient_Rec. - (** [natlike_rec2] is the same as [natlike_rec], but with a different proof, designed + (** [natlike_rec2] is the same as [natlike_rec], but with a different proof, designed to give a better extracted term. *) Let R (a b:Z) := 0 <= a /\ a < b. - + Let R_wf : well_founded R. Proof. set |