diff options
Diffstat (limited to 'theories/ZArith/Int.v')
-rw-r--r-- | theories/ZArith/Int.v | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v index 7c840c56..384c046f 100644 --- a/theories/ZArith/Int.v +++ b/theories/ZArith/Int.v @@ -250,7 +250,7 @@ Module MoreInt (Import I:Int). | EZplus e1 e2 => ((ez2z e1)+(ez2z e2))%Z | EZminus e1 e2 => ((ez2z e1)-(ez2z e2))%Z | EZmult e1 e2 => ((ez2z e1)*(ez2z e2))%Z - | EZmax e1 e2 => Zmax (ez2z e1) (ez2z e2) + | EZmax e1 e2 => Z.max (ez2z e1) (ez2z e2) | EZopp e => (-(ez2z e))%Z | EZofI e => i2z (ei2i e) | EZraw z => z @@ -367,14 +367,14 @@ Module Z_as_Int <: Int. Definition _1 := 1. Definition _2 := 2. Definition _3 := 3. - Definition plus := Zplus. - Definition opp := Zopp. - Definition minus := Zminus. - Definition mult := Zmult. - Definition max := Zmax. + Definition plus := Z.add. + Definition opp := Z.opp. + Definition minus := Z.sub. + Definition mult := Z.mul. + Definition max := Z.max. Definition gt_le_dec := Z_gt_le_dec. Definition ge_lt_dec := Z_ge_lt_dec. - Definition eq_dec := Z_eq_dec. + Definition eq_dec := Z.eq_dec. Definition i2z : int -> Z := fun n => n. Lemma i2z_eq : forall n p, i2z n=i2z p -> n = p. Proof. auto. Qed. Lemma i2z_0 : i2z _0 = 0. Proof. auto. Qed. @@ -385,5 +385,5 @@ Module Z_as_Int <: Int. Lemma i2z_opp n : i2z (- n) = - i2z n. Proof. auto. Qed. Lemma i2z_minus n p : i2z (n - p) = i2z n - i2z p. Proof. auto. Qed. Lemma i2z_mult n p : i2z (n * p) = i2z n * i2z p. Proof. auto. Qed. - Lemma i2z_max n p : i2z (max n p) = Zmax (i2z n) (i2z p). Proof. auto. Qed. + Lemma i2z_max n p : i2z (max n p) = Z.max (i2z n) (i2z p). Proof. auto. Qed. End Z_as_Int. |