summaryrefslogtreecommitdiff
path: root/theories/ZArith/BinInt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/BinInt.v')
-rw-r--r--theories/ZArith/BinInt.v1038
1 files changed, 1038 insertions, 0 deletions
diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v
new file mode 100644
index 00000000..11fa3872
--- /dev/null
+++ b/theories/ZArith/BinInt.v
@@ -0,0 +1,1038 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: BinInt.v,v 1.5.2.1 2004/07/16 19:31:20 herbelin Exp $ i*)
+
+(***********************************************************)
+(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
+(***********************************************************)
+
+Require Export BinPos.
+Require Export Pnat.
+Require Import BinNat.
+Require Import Plus.
+Require Import Mult.
+(**********************************************************************)
+(** Binary integer numbers *)
+
+Inductive Z : Set :=
+ | Z0 : Z
+ | Zpos : positive -> Z
+ | Zneg : positive -> Z.
+
+(** Declare Scope Z_scope with Key Z *)
+Delimit Scope Z_scope with Z.
+
+(** Automatically open scope positive_scope for the constructors of Z *)
+Bind Scope Z_scope with Z.
+Arguments Scope Zpos [positive_scope].
+Arguments Scope Zneg [positive_scope].
+
+(** Subtraction of positive into Z *)
+
+Definition Zdouble_plus_one (x:Z) :=
+ match x with
+ | Z0 => Zpos 1
+ | Zpos p => Zpos (xI p)
+ | Zneg p => Zneg (Pdouble_minus_one p)
+ end.
+
+Definition Zdouble_minus_one (x:Z) :=
+ match x with
+ | Z0 => Zneg 1
+ | Zneg p => Zneg (xI p)
+ | Zpos p => Zpos (Pdouble_minus_one p)
+ end.
+
+Definition Zdouble (x:Z) :=
+ match x with
+ | Z0 => Z0
+ | Zpos p => Zpos (xO p)
+ | Zneg p => Zneg (xO p)
+ end.
+
+Fixpoint ZPminus (x y:positive) {struct y} : Z :=
+ match x, y with
+ | xI x', xI y' => Zdouble (ZPminus x' y')
+ | xI x', xO y' => Zdouble_plus_one (ZPminus x' y')
+ | xI x', xH => Zpos (xO x')
+ | xO x', xI y' => Zdouble_minus_one (ZPminus x' y')
+ | xO x', xO y' => Zdouble (ZPminus x' y')
+ | xO x', xH => Zpos (Pdouble_minus_one x')
+ | xH, xI y' => Zneg (xO y')
+ | xH, xO y' => Zneg (Pdouble_minus_one y')
+ | xH, xH => Z0
+ end.
+
+(** Addition on integers *)
+
+Definition Zplus (x y:Z) :=
+ match x, y with
+ | Z0, y => y
+ | x, Z0 => x
+ | Zpos x', Zpos y' => Zpos (x' + y')
+ | Zpos x', Zneg y' =>
+ match (x' ?= y')%positive Eq with
+ | Eq => Z0
+ | Lt => Zneg (y' - x')
+ | Gt => Zpos (x' - y')
+ end
+ | Zneg x', Zpos y' =>
+ match (x' ?= y')%positive Eq with
+ | Eq => Z0
+ | Lt => Zpos (y' - x')
+ | Gt => Zneg (x' - y')
+ end
+ | Zneg x', Zneg y' => Zneg (x' + y')
+ end.
+
+Infix "+" := Zplus : Z_scope.
+
+(** Opposite *)
+
+Definition Zopp (x:Z) :=
+ match x with
+ | Z0 => Z0
+ | Zpos x => Zneg x
+ | Zneg x => Zpos x
+ end.
+
+Notation "- x" := (Zopp x) : Z_scope.
+
+(** Successor on integers *)
+
+Definition Zsucc (x:Z) := (x + Zpos 1)%Z.
+
+(** Predecessor on integers *)
+
+Definition Zpred (x:Z) := (x + Zneg 1)%Z.
+
+(** Subtraction on integers *)
+
+Definition Zminus (m n:Z) := (m + - n)%Z.
+
+Infix "-" := Zminus : Z_scope.
+
+(** Multiplication on integers *)
+
+Definition Zmult (x y:Z) :=
+ match x, y with
+ | Z0, _ => Z0
+ | _, Z0 => Z0
+ | Zpos x', Zpos y' => Zpos (x' * y')
+ | Zpos x', Zneg y' => Zneg (x' * y')
+ | Zneg x', Zpos y' => Zneg (x' * y')
+ | Zneg x', Zneg y' => Zpos (x' * y')
+ end.
+
+Infix "*" := Zmult : Z_scope.
+
+(** Comparison of integers *)
+
+Definition Zcompare (x y:Z) :=
+ match x, y with
+ | Z0, Z0 => Eq
+ | Z0, Zpos y' => Lt
+ | Z0, Zneg y' => Gt
+ | Zpos x', Z0 => Gt
+ | Zpos x', Zpos y' => (x' ?= y')%positive Eq
+ | Zpos x', Zneg y' => Gt
+ | Zneg x', Z0 => Lt
+ | Zneg x', Zpos y' => Lt
+ | Zneg x', Zneg y' => CompOpp ((x' ?= y')%positive Eq)
+ end.
+
+Infix "?=" := Zcompare (at level 70, no associativity) : Z_scope.
+
+Ltac elim_compare com1 com2 :=
+ case (Dcompare (com1 ?= com2)%Z);
+ [ idtac | let x := fresh "H" in
+ (intro x; case x; clear x) ].
+
+(** Sign function *)
+
+Definition Zsgn (z:Z) : Z :=
+ match z with
+ | Z0 => Z0
+ | Zpos p => Zpos 1
+ | Zneg p => Zneg 1
+ end.
+
+(** Direct, easier to handle variants of successor and addition *)
+
+Definition Zsucc' (x:Z) :=
+ match x with
+ | Z0 => Zpos 1
+ | Zpos x' => Zpos (Psucc x')
+ | Zneg x' => ZPminus 1 x'
+ end.
+
+Definition Zpred' (x:Z) :=
+ match x with
+ | Z0 => Zneg 1
+ | Zpos x' => ZPminus x' 1
+ | Zneg x' => Zneg (Psucc x')
+ end.
+
+Definition Zplus' (x y:Z) :=
+ match x, y with
+ | Z0, y => y
+ | x, Z0 => x
+ | Zpos x', Zpos y' => Zpos (x' + y')
+ | Zpos x', Zneg y' => ZPminus x' y'
+ | Zneg x', Zpos y' => ZPminus y' x'
+ | Zneg x', Zneg y' => Zneg (x' + y')
+ end.
+
+Open Local Scope Z_scope.
+
+(**********************************************************************)
+(** Inductive specification of Z *)
+
+Theorem Zind :
+ forall P:Z -> Prop,
+ P Z0 ->
+ (forall x:Z, P x -> P (Zsucc' x)) ->
+ (forall x:Z, P x -> P (Zpred' x)) -> forall n:Z, P n.
+Proof.
+intros P H0 Hs Hp z; destruct z.
+ assumption.
+ apply Pind with (P := fun p => P (Zpos p)).
+ change (P (Zsucc' Z0)) in |- *; apply Hs; apply H0.
+ intro n; exact (Hs (Zpos n)).
+ apply Pind with (P := fun p => P (Zneg p)).
+ change (P (Zpred' Z0)) in |- *; apply Hp; apply H0.
+ intro n; exact (Hp (Zneg n)).
+Qed.
+
+(**********************************************************************)
+(** Properties of opposite on binary integer numbers *)
+
+Theorem Zopp_neg : forall p:positive, - Zneg p = Zpos p.
+Proof.
+reflexivity.
+Qed.
+
+(** [opp] is involutive *)
+
+Theorem Zopp_involutive : forall n:Z, - - n = n.
+Proof.
+intro x; destruct x; reflexivity.
+Qed.
+
+(** Injectivity of the opposite *)
+
+Theorem Zopp_inj : forall n m:Z, - n = - m -> n = m.
+Proof.
+intros x y; case x; case y; simpl in |- *; intros;
+ [ trivial
+ | discriminate H
+ | discriminate H
+ | discriminate H
+ | simplify_eq H; intro E; rewrite E; trivial
+ | discriminate H
+ | discriminate H
+ | discriminate H
+ | simplify_eq H; intro E; rewrite E; trivial ].
+Qed.
+
+(**********************************************************************)
+(* Properties of the direct definition of successor and predecessor *)
+
+Lemma Zpred'_succ' : forall n:Z, Zpred' (Zsucc' n) = n.
+Proof.
+intro x; destruct x; simpl in |- *.
+ reflexivity.
+destruct p; simpl in |- *; try rewrite Pdouble_minus_one_o_succ_eq_xI;
+ reflexivity.
+destruct p; simpl in |- *; try rewrite Psucc_o_double_minus_one_eq_xO;
+ reflexivity.
+Qed.
+
+Lemma Zsucc'_discr : forall n:Z, n <> Zsucc' n.
+Proof.
+intro x; destruct x; simpl in |- *.
+ discriminate.
+ injection; apply Psucc_discr.
+ destruct p; simpl in |- *.
+ discriminate.
+ intro H; symmetry in H; injection H; apply double_moins_un_xO_discr.
+ discriminate.
+Qed.
+
+(**********************************************************************)
+(** Other properties of binary integer numbers *)
+
+Lemma ZL0 : 2%nat = (1 + 1)%nat.
+Proof.
+reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Properties of the addition on integers *)
+
+(** zero is left neutral for addition *)
+
+Theorem Zplus_0_l : forall n:Z, Z0 + n = n.
+Proof.
+intro x; destruct x; reflexivity.
+Qed.
+
+(** zero is right neutral for addition *)
+
+Theorem Zplus_0_r : forall n:Z, n + Z0 = n.
+Proof.
+intro x; destruct x; reflexivity.
+Qed.
+
+(** addition is commutative *)
+
+Theorem Zplus_comm : forall n m:Z, n + m = m + n.
+Proof.
+intro x; induction x as [| p| p]; intro y; destruct y as [| q| q];
+ simpl in |- *; try reflexivity.
+ rewrite Pplus_comm; reflexivity.
+ rewrite ZC4; destruct ((q ?= p)%positive Eq); reflexivity.
+ rewrite ZC4; destruct ((q ?= p)%positive Eq); reflexivity.
+ rewrite Pplus_comm; reflexivity.
+Qed.
+
+(** opposite distributes over addition *)
+
+Theorem Zopp_plus_distr : forall n m:Z, - (n + m) = - n + - m.
+Proof.
+intro x; destruct x as [| p| p]; intro y; destruct y as [| q| q];
+ simpl in |- *; reflexivity || destruct ((p ?= q)%positive Eq);
+ reflexivity.
+Qed.
+
+(** opposite is inverse for addition *)
+
+Theorem Zplus_opp_r : forall n:Z, n + - n = Z0.
+Proof.
+intro x; destruct x as [| p| p]; simpl in |- *;
+ [ reflexivity
+ | rewrite (Pcompare_refl p); reflexivity
+ | rewrite (Pcompare_refl p); reflexivity ].
+Qed.
+
+Theorem Zplus_opp_l : forall n:Z, - n + n = Z0.
+Proof.
+intro; rewrite Zplus_comm; apply Zplus_opp_r.
+Qed.
+
+Hint Local Resolve Zplus_0_l Zplus_0_r.
+
+(** addition is associative *)
+
+Lemma weak_assoc :
+ forall (p q:positive) (n:Z), Zpos p + (Zpos q + n) = Zpos p + Zpos q + n.
+Proof.
+intros x y z'; case z';
+ [ auto with arith
+ | intros z; simpl in |- *; rewrite Pplus_assoc; auto with arith
+ | intros z; simpl in |- *; ElimPcompare y z; intros E0; rewrite E0;
+ ElimPcompare (x + y)%positive z; intros E1; rewrite E1;
+ [ absurd ((x + y ?= z)%positive Eq = Eq);
+ [ (* Case 1 *)
+ rewrite nat_of_P_gt_Gt_compare_complement_morphism;
+ [ discriminate
+ | rewrite nat_of_P_plus_morphism; rewrite (Pcompare_Eq_eq y z E0);
+ elim (ZL4 x); intros k E2; rewrite E2;
+ simpl in |- *; unfold gt, lt in |- *;
+ apply le_n_S; apply le_plus_r ]
+ | assumption ]
+ | absurd ((x + y ?= z)%positive Eq = Lt);
+ [ (* Case 2 *)
+ rewrite nat_of_P_gt_Gt_compare_complement_morphism;
+ [ discriminate
+ | rewrite nat_of_P_plus_morphism; rewrite (Pcompare_Eq_eq y z E0);
+ elim (ZL4 x); intros k E2; rewrite E2;
+ simpl in |- *; unfold gt, lt in |- *;
+ apply le_n_S; apply le_plus_r ]
+ | assumption ]
+ | rewrite (Pcompare_Eq_eq y z E0);
+ (* Case 3 *)
+ elim (Pminus_mask_Gt (x + z) z);
+ [ intros t H; elim H; intros H1 H2; elim H2; intros H3 H4;
+ unfold Pminus in |- *; rewrite H1; cut (x = t);
+ [ intros E; rewrite E; auto with arith
+ | apply Pplus_reg_r with (r := z); rewrite <- H3;
+ rewrite Pplus_comm; trivial with arith ]
+ | pattern z at 1 in |- *; rewrite <- (Pcompare_Eq_eq y z E0);
+ assumption ]
+ | elim (Pminus_mask_Gt z y);
+ [ (* Case 4 *)
+ intros k H; elim H; intros H1 H2; elim H2; intros H3 H4;
+ unfold Pminus at 1 in |- *; rewrite H1; cut (x = k);
+ [ intros E; rewrite E; rewrite (Pcompare_refl k);
+ trivial with arith
+ | apply Pplus_reg_r with (r := y); rewrite (Pplus_comm k y);
+ rewrite H3; apply Pcompare_Eq_eq; assumption ]
+ | apply ZC2; assumption ]
+ | elim (Pminus_mask_Gt z y);
+ [ (* Case 5 *)
+ intros k H; elim H; intros H1 H2; elim H2; intros H3 H4;
+ unfold Pminus at 1 3 5 in |- *; rewrite H1;
+ cut ((x ?= k)%positive Eq = Lt);
+ [ intros E2; rewrite E2; elim (Pminus_mask_Gt k x);
+ [ intros i H5; elim H5; intros H6 H7; elim H7; intros H8 H9;
+ elim (Pminus_mask_Gt z (x + y));
+ [ intros j H10; elim H10; intros H11 H12; elim H12;
+ intros H13 H14; unfold Pminus in |- *;
+ rewrite H6; rewrite H11; cut (i = j);
+ [ intros E; rewrite E; auto with arith
+ | apply (Pplus_reg_l (x + y)); rewrite H13;
+ rewrite (Pplus_comm x y); rewrite <- Pplus_assoc;
+ rewrite H8; assumption ]
+ | apply ZC2; assumption ]
+ | apply ZC2; assumption ]
+ | apply nat_of_P_lt_Lt_compare_complement_morphism;
+ apply plus_lt_reg_l with (p := nat_of_P y);
+ do 2 rewrite <- nat_of_P_plus_morphism;
+ apply nat_of_P_lt_Lt_compare_morphism;
+ rewrite H3; rewrite Pplus_comm; assumption ]
+ | apply ZC2; assumption ]
+ | elim (Pminus_mask_Gt z y);
+ [ (* Case 6 *)
+ intros k H; elim H; intros H1 H2; elim H2; intros H3 H4;
+ elim (Pminus_mask_Gt (x + y) z);
+ [ intros i H5; elim H5; intros H6 H7; elim H7; intros H8 H9;
+ unfold Pminus in |- *; rewrite H1; rewrite H6;
+ cut ((x ?= k)%positive Eq = Gt);
+ [ intros H10; elim (Pminus_mask_Gt x k H10); intros j H11;
+ elim H11; intros H12 H13; elim H13;
+ intros H14 H15; rewrite H10; rewrite H12;
+ cut (i = j);
+ [ intros H16; rewrite H16; auto with arith
+ | apply (Pplus_reg_l (z + k)); rewrite <- (Pplus_assoc z k j);
+ rewrite H14; rewrite (Pplus_comm z k);
+ rewrite <- Pplus_assoc; rewrite H8;
+ rewrite (Pplus_comm x y); rewrite Pplus_assoc;
+ rewrite (Pplus_comm k y); rewrite H3;
+ trivial with arith ]
+ | apply nat_of_P_gt_Gt_compare_complement_morphism;
+ unfold lt, gt in |- *;
+ apply plus_lt_reg_l with (p := nat_of_P y);
+ do 2 rewrite <- nat_of_P_plus_morphism;
+ apply nat_of_P_lt_Lt_compare_morphism;
+ rewrite H3; rewrite Pplus_comm; apply ZC1;
+ assumption ]
+ | assumption ]
+ | apply ZC2; assumption ]
+ | absurd ((x + y ?= z)%positive Eq = Eq);
+ [ (* Case 7 *)
+ rewrite nat_of_P_gt_Gt_compare_complement_morphism;
+ [ discriminate
+ | rewrite nat_of_P_plus_morphism; unfold gt in |- *;
+ apply lt_le_trans with (m := nat_of_P y);
+ [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption
+ | apply le_plus_r ] ]
+ | assumption ]
+ | absurd ((x + y ?= z)%positive Eq = Lt);
+ [ (* Case 8 *)
+ rewrite nat_of_P_gt_Gt_compare_complement_morphism;
+ [ discriminate
+ | unfold gt in |- *; apply lt_le_trans with (m := nat_of_P y);
+ [ exact (nat_of_P_gt_Gt_compare_morphism y z E0)
+ | rewrite nat_of_P_plus_morphism; apply le_plus_r ] ]
+ | assumption ]
+ | elim Pminus_mask_Gt with (1 := E0); intros k H1;
+ (* Case 9 *)
+ elim Pminus_mask_Gt with (1 := E1); intros i H2;
+ elim H1; intros H3 H4; elim H4; intros H5 H6;
+ elim H2; intros H7 H8; elim H8; intros H9 H10;
+ unfold Pminus in |- *; rewrite H3; rewrite H7;
+ cut ((x + k)%positive = i);
+ [ intros E; rewrite E; auto with arith
+ | apply (Pplus_reg_l z); rewrite (Pplus_comm x k); rewrite Pplus_assoc;
+ rewrite H5; rewrite H9; rewrite Pplus_comm;
+ trivial with arith ] ] ].
+Qed.
+
+Hint Local Resolve weak_assoc.
+
+Theorem Zplus_assoc : forall n m p:Z, n + (m + p) = n + m + p.
+Proof.
+intros x y z; case x; case y; case z; auto with arith; intros;
+ [ rewrite (Zplus_comm (Zneg p0)); rewrite weak_assoc;
+ rewrite (Zplus_comm (Zpos p1 + Zneg p0)); rewrite weak_assoc;
+ rewrite (Zplus_comm (Zpos p1)); trivial with arith
+ | apply Zopp_inj; do 4 rewrite Zopp_plus_distr; do 2 rewrite Zopp_neg;
+ rewrite Zplus_comm; rewrite <- weak_assoc;
+ rewrite (Zplus_comm (- Zpos p1));
+ rewrite (Zplus_comm (Zpos p0 + - Zpos p1)); rewrite (weak_assoc p);
+ rewrite weak_assoc; rewrite (Zplus_comm (Zpos p0));
+ trivial with arith
+ | rewrite Zplus_comm; rewrite (Zplus_comm (Zpos p0) (Zpos p));
+ rewrite <- weak_assoc; rewrite Zplus_comm; rewrite (Zplus_comm (Zpos p0));
+ trivial with arith
+ | apply Zopp_inj; do 4 rewrite Zopp_plus_distr; do 2 rewrite Zopp_neg;
+ rewrite (Zplus_comm (- Zpos p0)); rewrite weak_assoc;
+ rewrite (Zplus_comm (Zpos p1 + - Zpos p0)); rewrite weak_assoc;
+ rewrite (Zplus_comm (Zpos p)); trivial with arith
+ | apply Zopp_inj; do 4 rewrite Zopp_plus_distr; do 2 rewrite Zopp_neg;
+ apply weak_assoc
+ | apply Zopp_inj; do 4 rewrite Zopp_plus_distr; do 2 rewrite Zopp_neg;
+ apply weak_assoc ].
+Qed.
+
+
+Lemma Zplus_assoc_reverse : forall n m p:Z, n + m + p = n + (m + p).
+Proof.
+intros; symmetry in |- *; apply Zplus_assoc.
+Qed.
+
+(** Associativity mixed with commutativity *)
+
+Theorem Zplus_permute : forall n m p:Z, n + (m + p) = m + (n + p).
+Proof.
+intros n m p; rewrite Zplus_comm; rewrite <- Zplus_assoc;
+ rewrite (Zplus_comm p n); trivial with arith.
+Qed.
+
+(** addition simplifies *)
+
+Theorem Zplus_reg_l : forall n m p:Z, n + m = n + p -> m = p.
+intros n m p H; cut (- n + (n + m) = - n + (n + p));
+ [ do 2 rewrite Zplus_assoc; rewrite (Zplus_comm (- n) n);
+ rewrite Zplus_opp_r; simpl in |- *; trivial with arith
+ | rewrite H; trivial with arith ].
+Qed.
+
+(** addition and successor permutes *)
+
+Lemma Zplus_succ_l : forall n m:Z, Zsucc n + m = Zsucc (n + m).
+Proof.
+intros x y; unfold Zsucc in |- *; rewrite (Zplus_comm (x + y));
+ rewrite Zplus_assoc; rewrite (Zplus_comm (Zpos 1));
+ trivial with arith.
+Qed.
+
+Lemma Zplus_succ_r : forall n m:Z, Zsucc (n + m) = n + Zsucc m.
+Proof.
+intros n m; unfold Zsucc in |- *; rewrite Zplus_assoc; trivial with arith.
+Qed.
+
+Lemma Zplus_succ_comm : forall n m:Z, Zsucc n + m = n + Zsucc m.
+Proof.
+unfold Zsucc in |- *; intros n m; rewrite <- Zplus_assoc;
+ rewrite (Zplus_comm (Zpos 1)); trivial with arith.
+Qed.
+
+(** Misc properties, usually redundant or non natural *)
+
+Lemma Zplus_0_r_reverse : forall n:Z, n = n + Z0.
+Proof.
+symmetry in |- *; apply Zplus_0_r.
+Qed.
+
+Lemma Zplus_0_simpl_l : forall n m:Z, n + Z0 = m -> n = m.
+Proof.
+intros n m; rewrite Zplus_0_r; intro; assumption.
+Qed.
+
+Lemma Zplus_0_simpl_l_reverse : forall n m:Z, n = m + Z0 -> n = m.
+Proof.
+intros n m; rewrite Zplus_0_r; intro; assumption.
+Qed.
+
+Lemma Zplus_eq_compat : forall n m p q:Z, n = m -> p = q -> n + p = m + q.
+Proof.
+intros; rewrite H; rewrite H0; reflexivity.
+Qed.
+
+Lemma Zplus_opp_expand : forall n m p:Z, n + - m = n + - p + (p + - m).
+Proof.
+intros x y z.
+rewrite <- (Zplus_assoc x).
+rewrite (Zplus_assoc (- z)).
+rewrite Zplus_opp_l.
+reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Properties of successor and predecessor on binary integer numbers *)
+
+Theorem Zsucc_discr : forall n:Z, n <> Zsucc n.
+Proof.
+intros n; cut (Z0 <> Zpos 1);
+ [ unfold not in |- *; intros H1 H2; apply H1; apply (Zplus_reg_l n);
+ rewrite Zplus_0_r; exact H2
+ | discriminate ].
+Qed.
+
+Theorem Zpos_succ_morphism :
+ forall p:positive, Zpos (Psucc p) = Zsucc (Zpos p).
+Proof.
+intro; rewrite Pplus_one_succ_r; unfold Zsucc in |- *; simpl in |- *;
+ trivial with arith.
+Qed.
+
+(** successor and predecessor are inverse functions *)
+
+Theorem Zsucc_pred : forall n:Z, n = Zsucc (Zpred n).
+Proof.
+intros n; unfold Zsucc, Zpred in |- *; rewrite <- Zplus_assoc; simpl in |- *;
+ rewrite Zplus_0_r; trivial with arith.
+Qed.
+
+Hint Immediate Zsucc_pred: zarith.
+
+Theorem Zpred_succ : forall n:Z, n = Zpred (Zsucc n).
+Proof.
+intros m; unfold Zpred, Zsucc in |- *; rewrite <- Zplus_assoc; simpl in |- *;
+ rewrite Zplus_comm; auto with arith.
+Qed.
+
+Theorem Zsucc_inj : forall n m:Z, Zsucc n = Zsucc m -> n = m.
+Proof.
+intros n m H.
+change (Zneg 1 + Zpos 1 + n = Zneg 1 + Zpos 1 + m) in |- *;
+ do 2 rewrite <- Zplus_assoc; do 2 rewrite (Zplus_comm (Zpos 1));
+ unfold Zsucc in H; rewrite H; trivial with arith.
+Qed.
+
+(** Misc properties, usually redundant or non natural *)
+
+Lemma Zsucc_eq_compat : forall n m:Z, n = m -> Zsucc n = Zsucc m.
+Proof.
+intros n m H; rewrite H; reflexivity.
+Qed.
+
+Lemma Zsucc_inj_contrapositive : forall n m:Z, n <> m -> Zsucc n <> Zsucc m.
+Proof.
+unfold not in |- *; intros n m H1 H2; apply H1; apply Zsucc_inj; assumption.
+Qed.
+
+(**********************************************************************)
+(** Properties of subtraction on binary integer numbers *)
+
+Lemma Zminus_0_r : forall n:Z, n - Z0 = n.
+Proof.
+intro; unfold Zminus in |- *; simpl in |- *; rewrite Zplus_0_r;
+ trivial with arith.
+Qed.
+
+Lemma Zminus_0_l_reverse : forall n:Z, n = n - Z0.
+Proof.
+intro; symmetry in |- *; apply Zminus_0_r.
+Qed.
+
+Lemma Zminus_diag : forall n:Z, n - n = Z0.
+Proof.
+intro; unfold Zminus in |- *; rewrite Zplus_opp_r; trivial with arith.
+Qed.
+
+Lemma Zminus_diag_reverse : forall n:Z, Z0 = n - n.
+Proof.
+intro; symmetry in |- *; apply Zminus_diag.
+Qed.
+
+Lemma Zplus_minus_eq : forall n m p:Z, n = m + p -> p = n - m.
+Proof.
+intros n m p H; unfold Zminus in |- *; apply (Zplus_reg_l m);
+ rewrite (Zplus_comm m (n + - m)); rewrite <- Zplus_assoc;
+ rewrite Zplus_opp_l; rewrite Zplus_0_r; rewrite H;
+ trivial with arith.
+Qed.
+
+Lemma Zminus_plus : forall n m:Z, n + m - n = m.
+Proof.
+intros n m; unfold Zminus in |- *; rewrite (Zplus_comm n m);
+ rewrite <- Zplus_assoc; rewrite Zplus_opp_r; apply Zplus_0_r.
+Qed.
+
+Lemma Zplus_minus : forall n m:Z, n + (m - n) = m.
+Proof.
+unfold Zminus in |- *; intros n m; rewrite Zplus_permute; rewrite Zplus_opp_r;
+ apply Zplus_0_r.
+Qed.
+
+Lemma Zminus_succ_l : forall n m:Z, Zsucc (n - m) = Zsucc n - m.
+Proof.
+intros n m; unfold Zminus, Zsucc in |- *; rewrite (Zplus_comm n (- m));
+ rewrite <- Zplus_assoc; apply Zplus_comm.
+Qed.
+
+Lemma Zminus_plus_simpl_l : forall n m p:Z, p + n - (p + m) = n - m.
+Proof.
+intros n m p; unfold Zminus in |- *; rewrite Zopp_plus_distr;
+ rewrite Zplus_assoc; rewrite (Zplus_comm p); rewrite <- (Zplus_assoc n p);
+ rewrite Zplus_opp_r; rewrite Zplus_0_r; trivial with arith.
+Qed.
+
+Lemma Zminus_plus_simpl_l_reverse : forall n m p:Z, n - m = p + n - (p + m).
+Proof.
+intros; symmetry in |- *; apply Zminus_plus_simpl_l.
+Qed.
+
+Lemma Zminus_plus_simpl_r : forall n m p:Z, n + p - (m + p) = n - m.
+intros x y n.
+unfold Zminus in |- *.
+rewrite Zopp_plus_distr.
+rewrite (Zplus_comm (- y) (- n)).
+rewrite Zplus_assoc.
+rewrite <- (Zplus_assoc x n (- n)).
+rewrite (Zplus_opp_r n).
+rewrite <- Zplus_0_r_reverse.
+reflexivity.
+Qed.
+
+(** Misc redundant properties *)
+
+
+Lemma Zeq_minus : forall n m:Z, n = m -> n - m = Z0.
+Proof.
+intros x y H; rewrite H; symmetry in |- *; apply Zminus_diag_reverse.
+Qed.
+
+Lemma Zminus_eq : forall n m:Z, n - m = Z0 -> n = m.
+Proof.
+intros x y H; rewrite <- (Zplus_minus y x); rewrite H; apply Zplus_0_r.
+Qed.
+
+
+(**********************************************************************)
+(** Properties of multiplication on binary integer numbers *)
+
+(** One is neutral for multiplication *)
+
+Theorem Zmult_1_l : forall n:Z, Zpos 1 * n = n.
+Proof.
+intro x; destruct x; reflexivity.
+Qed.
+
+Theorem Zmult_1_r : forall n:Z, n * Zpos 1 = n.
+Proof.
+intro x; destruct x; simpl in |- *; try rewrite Pmult_1_r; reflexivity.
+Qed.
+
+(** Zero property of multiplication *)
+
+Theorem Zmult_0_l : forall n:Z, Z0 * n = Z0.
+Proof.
+intro x; destruct x; reflexivity.
+Qed.
+
+Theorem Zmult_0_r : forall n:Z, n * Z0 = Z0.
+Proof.
+intro x; destruct x; reflexivity.
+Qed.
+
+Hint Local Resolve Zmult_0_l Zmult_0_r.
+
+Lemma Zmult_0_r_reverse : forall n:Z, Z0 = n * Z0.
+Proof.
+intro x; destruct x; reflexivity.
+Qed.
+
+(** Commutativity of multiplication *)
+
+Theorem Zmult_comm : forall n m:Z, n * m = m * n.
+Proof.
+intros x y; destruct x as [| p| p]; destruct y as [| q| q]; simpl in |- *;
+ try rewrite (Pmult_comm p q); reflexivity.
+Qed.
+
+(** Associativity of multiplication *)
+
+Theorem Zmult_assoc : forall n m p:Z, n * (m * p) = n * m * p.
+Proof.
+intros x y z; destruct x; destruct y; destruct z; simpl in |- *;
+ try rewrite Pmult_assoc; reflexivity.
+Qed.
+
+Lemma Zmult_assoc_reverse : forall n m p:Z, n * m * p = n * (m * p).
+Proof.
+intros n m p; rewrite Zmult_assoc; trivial with arith.
+Qed.
+
+(** Associativity mixed with commutativity *)
+
+Theorem Zmult_permute : forall n m p:Z, n * (m * p) = m * (n * p).
+Proof.
+intros x y z; rewrite (Zmult_assoc y x z); rewrite (Zmult_comm y x).
+apply Zmult_assoc.
+Qed.
+
+(** Z is integral *)
+
+Theorem Zmult_integral_l : forall n m:Z, n <> Z0 -> m * n = Z0 -> m = Z0.
+Proof.
+intros x y; destruct x as [| p| p].
+ intro H; absurd (Z0 = Z0); trivial.
+ intros _ H; destruct y as [| q| q]; reflexivity || discriminate.
+ intros _ H; destruct y as [| q| q]; reflexivity || discriminate.
+Qed.
+
+
+Theorem Zmult_integral : forall n m:Z, n * m = Z0 -> n = Z0 \/ m = Z0.
+Proof.
+intros x y; destruct x; destruct y; auto; simpl in |- *; intro H;
+ discriminate H.
+Qed.
+
+
+Lemma Zmult_1_inversion_l :
+ forall n m:Z, n * m = Zpos 1 -> n = Zpos 1 \/ n = Zneg 1.
+Proof.
+intros x y; destruct x as [| p| p]; intro; [ discriminate | left | right ];
+ (destruct y as [| q| q]; try discriminate; simpl in H; injection H; clear H;
+ intro H; rewrite Pmult_1_inversion_l with (1 := H);
+ reflexivity).
+Qed.
+
+(** Multiplication and Opposite *)
+
+Theorem Zopp_mult_distr_l : forall n m:Z, - (n * m) = - n * m.
+Proof.
+intros x y; destruct x; destruct y; reflexivity.
+Qed.
+
+Theorem Zopp_mult_distr_r : forall n m:Z, - (n * m) = n * - m.
+intros x y; rewrite (Zmult_comm x y); rewrite Zopp_mult_distr_l;
+ apply Zmult_comm.
+Qed.
+
+Lemma Zopp_mult_distr_l_reverse : forall n m:Z, - n * m = - (n * m).
+Proof.
+intros x y; symmetry in |- *; apply Zopp_mult_distr_l.
+Qed.
+
+Theorem Zmult_opp_comm : forall n m:Z, - n * m = n * - m.
+intros x y; rewrite Zopp_mult_distr_l_reverse; rewrite Zopp_mult_distr_r;
+ trivial with arith.
+Qed.
+
+Theorem Zmult_opp_opp : forall n m:Z, - n * - m = n * m.
+Proof.
+intros x y; destruct x; destruct y; reflexivity.
+Qed.
+
+Theorem Zopp_eq_mult_neg_1 : forall n:Z, - n = n * Zneg 1.
+intro x; induction x; intros; rewrite Zmult_comm; auto with arith.
+Qed.
+
+(** Distributivity of multiplication over addition *)
+
+Lemma weak_Zmult_plus_distr_r :
+ forall (p:positive) (n m:Z), Zpos p * (n + m) = Zpos p * n + Zpos p * m.
+Proof.
+intros x y' z'; case y'; case z'; auto with arith; intros y z;
+ (simpl in |- *; rewrite Pmult_plus_distr_l; trivial with arith) ||
+ (simpl in |- *; ElimPcompare z y; intros E0; rewrite E0;
+ [ rewrite (Pcompare_Eq_eq z y E0); rewrite (Pcompare_refl (x * y));
+ trivial with arith
+ | cut ((x * z ?= x * y)%positive Eq = Lt);
+ [ intros E; rewrite E; rewrite Pmult_minus_distr_l;
+ [ trivial with arith | apply ZC2; assumption ]
+ | apply nat_of_P_lt_Lt_compare_complement_morphism;
+ do 2 rewrite nat_of_P_mult_morphism; elim (ZL4 x);
+ intros h H1; rewrite H1; apply mult_S_lt_compat_l;
+ exact (nat_of_P_lt_Lt_compare_morphism z y E0) ]
+ | cut ((x * z ?= x * y)%positive Eq = Gt);
+ [ intros E; rewrite E; rewrite Pmult_minus_distr_l; auto with arith
+ | apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *;
+ do 2 rewrite nat_of_P_mult_morphism; elim (ZL4 x);
+ intros h H1; rewrite H1; apply mult_S_lt_compat_l;
+ exact (nat_of_P_gt_Gt_compare_morphism z y E0) ] ]).
+Qed.
+
+Theorem Zmult_plus_distr_r : forall n m p:Z, n * (m + p) = n * m + n * p.
+Proof.
+intros x y z; case x;
+ [ auto with arith
+ | intros x'; apply weak_Zmult_plus_distr_r
+ | intros p; apply Zopp_inj; rewrite Zopp_plus_distr;
+ do 3 rewrite <- Zopp_mult_distr_l_reverse; rewrite Zopp_neg;
+ apply weak_Zmult_plus_distr_r ].
+Qed.
+
+Theorem Zmult_plus_distr_l : forall n m p:Z, (n + m) * p = n * p + m * p.
+Proof.
+intros n m p; rewrite Zmult_comm; rewrite Zmult_plus_distr_r;
+ do 2 rewrite (Zmult_comm p); trivial with arith.
+Qed.
+
+(** Distributivity of multiplication over subtraction *)
+
+Lemma Zmult_minus_distr_r : forall n m p:Z, (n - m) * p = n * p - m * p.
+Proof.
+intros x y z; unfold Zminus in |- *.
+rewrite <- Zopp_mult_distr_l_reverse.
+apply Zmult_plus_distr_l.
+Qed.
+
+
+Lemma Zmult_minus_distr_l : forall n m p:Z, p * (n - m) = p * n - p * m.
+Proof.
+intros x y z; rewrite (Zmult_comm z (x - y)).
+rewrite (Zmult_comm z x).
+rewrite (Zmult_comm z y).
+apply Zmult_minus_distr_r.
+Qed.
+
+(** Simplification of multiplication for non-zero integers *)
+
+Lemma Zmult_reg_l : forall n m p:Z, p <> Z0 -> p * n = p * m -> n = m.
+Proof.
+intros x y z H H0.
+generalize (Zeq_minus _ _ H0).
+intro.
+apply Zminus_eq.
+rewrite <- Zmult_minus_distr_l in H1.
+clear H0; destruct (Zmult_integral _ _ H1).
+contradiction.
+trivial.
+Qed.
+
+Lemma Zmult_reg_r : forall n m p:Z, p <> Z0 -> n * p = m * p -> n = m.
+Proof.
+intros x y z Hz.
+rewrite (Zmult_comm x z).
+rewrite (Zmult_comm y z).
+intro; apply Zmult_reg_l with z; assumption.
+Qed.
+
+(** Addition and multiplication by 2 *)
+
+Lemma Zplus_diag_eq_mult_2 : forall n:Z, n + n = n * Zpos 2.
+Proof.
+intros x; pattern x at 1 2 in |- *; rewrite <- (Zmult_1_r x);
+ rewrite <- Zmult_plus_distr_r; reflexivity.
+Qed.
+
+(** Multiplication and successor *)
+
+Lemma Zmult_succ_r : forall n m:Z, n * Zsucc m = n * m + n.
+Proof.
+intros n m; unfold Zsucc in |- *; rewrite Zmult_plus_distr_r;
+ rewrite (Zmult_comm n (Zpos 1)); rewrite Zmult_1_l;
+ trivial with arith.
+Qed.
+
+Lemma Zmult_succ_r_reverse : forall n m:Z, n * m + n = n * Zsucc m.
+Proof.
+intros; symmetry in |- *; apply Zmult_succ_r.
+Qed.
+
+Lemma Zmult_succ_l : forall n m:Z, Zsucc n * m = n * m + m.
+Proof.
+intros n m; unfold Zsucc in |- *; rewrite Zmult_plus_distr_l;
+ rewrite Zmult_1_l; trivial with arith.
+Qed.
+
+Lemma Zmult_succ_l_reverse : forall n m:Z, n * m + m = Zsucc n * m.
+Proof.
+intros; symmetry in |- *; apply Zmult_succ_l.
+Qed.
+
+(** Misc redundant properties *)
+
+Lemma Z_eq_mult : forall n m:Z, m = Z0 -> m * n = Z0.
+intros x y H; rewrite H; auto with arith.
+Qed.
+
+(**********************************************************************)
+(** Relating binary positive numbers and binary integers *)
+
+Lemma Zpos_xI : forall p:positive, Zpos (xI p) = Zpos 2 * Zpos p + Zpos 1.
+Proof.
+intro; apply refl_equal.
+Qed.
+
+Lemma Zpos_xO : forall p:positive, Zpos (xO p) = Zpos 2 * Zpos p.
+Proof.
+intro; apply refl_equal.
+Qed.
+
+Lemma Zneg_xI : forall p:positive, Zneg (xI p) = Zpos 2 * Zneg p - Zpos 1.
+Proof.
+intro; apply refl_equal.
+Qed.
+
+Lemma Zneg_xO : forall p:positive, Zneg (xO p) = Zpos 2 * Zneg p.
+Proof.
+reflexivity.
+Qed.
+
+Lemma Zpos_plus_distr : forall p q:positive, Zpos (p + q) = Zpos p + Zpos q.
+Proof.
+intros p p'; destruct p;
+ [ destruct p' as [p0| p0| ]
+ | destruct p' as [p0| p0| ]
+ | destruct p' as [p| p| ] ]; reflexivity.
+Qed.
+
+Lemma Zneg_plus_distr : forall p q:positive, Zneg (p + q) = Zneg p + Zneg q.
+Proof.
+intros p p'; destruct p;
+ [ destruct p' as [p0| p0| ]
+ | destruct p' as [p0| p0| ]
+ | destruct p' as [p| p| ] ]; reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Order relations *)
+
+Definition Zlt (x y:Z) := (x ?= y) = Lt.
+Definition Zgt (x y:Z) := (x ?= y) = Gt.
+Definition Zle (x y:Z) := (x ?= y) <> Gt.
+Definition Zge (x y:Z) := (x ?= y) <> Lt.
+Definition Zne (x y:Z) := x <> y.
+
+Infix "<=" := Zle : Z_scope.
+Infix "<" := Zlt : Z_scope.
+Infix ">=" := Zge : Z_scope.
+Infix ">" := Zgt : Z_scope.
+
+Notation "x <= y <= z" := (x <= y /\ y <= z) : Z_scope.
+Notation "x <= y < z" := (x <= y /\ y < z) : Z_scope.
+Notation "x < y < z" := (x < y /\ y < z) : Z_scope.
+Notation "x < y <= z" := (x < y /\ y <= z) : Z_scope.
+
+(**********************************************************************)
+(** Absolute value on integers *)
+
+Definition Zabs_nat (x:Z) : nat :=
+ match x with
+ | Z0 => 0%nat
+ | Zpos p => nat_of_P p
+ | Zneg p => nat_of_P p
+ end.
+
+Definition Zabs (z:Z) : Z :=
+ match z with
+ | Z0 => Z0
+ | Zpos p => Zpos p
+ | Zneg p => Zpos p
+ end.
+
+(**********************************************************************)
+(** From [nat] to [Z] *)
+
+Definition Z_of_nat (x:nat) :=
+ match x with
+ | O => Z0
+ | S y => Zpos (P_of_succ_nat y)
+ end.
+
+Require Import BinNat.
+
+Definition Zabs_N (z:Z) :=
+ match z with
+ | Z0 => 0%N
+ | Zpos p => Npos p
+ | Zneg p => Npos p
+ end.
+
+Definition Z_of_N (x:N) := match x with
+ | N0 => Z0
+ | Npos p => Zpos p
+ end. \ No newline at end of file