summaryrefslogtreecommitdiff
path: root/theories/Wellfounded/Lexicographic_Exponentiation.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Wellfounded/Lexicographic_Exponentiation.v')
-rw-r--r--theories/Wellfounded/Lexicographic_Exponentiation.v696
1 files changed, 345 insertions, 351 deletions
diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v
index 988d2475..24816a20 100644
--- a/theories/Wellfounded/Lexicographic_Exponentiation.v
+++ b/theories/Wellfounded/Lexicographic_Exponentiation.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Lexicographic_Exponentiation.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Lexicographic_Exponentiation.v 9245 2006-10-17 12:53:34Z notin $ i*)
(** Author: Cristina Cornes
@@ -19,356 +19,350 @@ Require Import Relation_Operators.
Require Import Transitive_Closure.
Section Wf_Lexicographic_Exponentiation.
-Variable A : Set.
-Variable leA : A -> A -> Prop.
-
-Notation Power := (Pow A leA).
-Notation Lex_Exp := (lex_exp A leA).
-Notation ltl := (Ltl A leA).
-Notation Descl := (Desc A leA).
-
-Notation List := (list A).
-Notation Nil := (nil (A:=A)).
-(* useless but symmetric *)
-Notation Cons := (cons (A:=A)).
-Notation "<< x , y >>" := (exist Descl x y) (at level 0, x, y at level 100).
-
-Hint Resolve d_one d_nil t_step.
-
-Lemma left_prefix : forall x y z:List, ltl (x ++ y) z -> ltl x z.
-Proof.
- simple induction x.
- simple induction z.
- simpl in |- *; intros H.
- inversion_clear H.
- simpl in |- *; intros; apply (Lt_nil A leA).
- intros a l HInd.
- simpl in |- *.
- intros.
- inversion_clear H.
- apply (Lt_hd A leA); auto with sets.
- apply (Lt_tl A leA).
- apply (HInd y y0); auto with sets.
-Qed.
-
-
-Lemma right_prefix :
- forall x y z:List,
- ltl x (y ++ z) -> ltl x y \/ (exists y' : List, x = y ++ y' /\ ltl y' z).
-Proof.
- intros x y; generalize x.
- elim y; simpl in |- *.
- right.
- exists x0; auto with sets.
- intros.
- inversion H0.
- left; apply (Lt_nil A leA).
- left; apply (Lt_hd A leA); auto with sets.
- generalize (H x1 z H3).
- simple induction 1.
- left; apply (Lt_tl A leA); auto with sets.
- simple induction 1.
- simple induction 1; intros.
- rewrite H8.
- right; exists x2; auto with sets.
-Qed.
-
-
-
-Lemma desc_prefix : forall (x:List) (a:A), Descl (x ++ Cons a Nil) -> Descl x.
-Proof.
- intros.
- inversion H.
- generalize (app_cons_not_nil _ _ _ H1); simple induction 1.
- cut (x ++ Cons a Nil = Cons x0 Nil); auto with sets.
- intro.
- generalize (app_eq_unit _ _ H0).
- simple induction 1; simple induction 1; intros.
- rewrite H4; auto with sets.
- discriminate H5.
- generalize (app_inj_tail _ _ _ _ H0).
- simple induction 1; intros.
- rewrite <- H4; auto with sets.
-Qed.
-
-Lemma desc_tail :
- forall (x:List) (a b:A),
- Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b.
-Proof.
- intro.
- apply rev_ind with
- (A := A)
- (P := fun x:List =>
- forall a b:A,
- Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b).
- intros.
-
- inversion H.
- cut (Cons b (Cons a Nil) = (Nil ++ Cons b Nil) ++ Cons a Nil);
- auto with sets; intro.
- generalize H0.
- intro.
- generalize (app_inj_tail (l ++ Cons y Nil) (Nil ++ Cons b Nil) _ _ H4);
- simple induction 1.
- intros.
-
- generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
- generalize H1.
- rewrite <- H10; rewrite <- H7; intro.
- apply (t_step A leA); auto with sets.
-
-
-
- intros.
- inversion H0.
- generalize (app_cons_not_nil _ _ _ H3); intro.
- elim H1.
-
- generalize H0.
- generalize (app_comm_cons (l ++ Cons x0 Nil) (Cons a Nil) b);
- simple induction 1.
- intro.
- generalize (desc_prefix (Cons b (l ++ Cons x0 Nil)) a H5); intro.
- generalize (H x0 b H6).
- intro.
- apply t_trans with (A := A) (y := x0); auto with sets.
-
- apply t_step.
- generalize H1.
- rewrite H4; intro.
-
- generalize (app_inj_tail _ _ _ _ H8); simple induction 1.
- intros.
- generalize H2; generalize (app_comm_cons l (Cons x0 Nil) b).
- intro.
- generalize H10.
- rewrite H12; intro.
- generalize (app_inj_tail _ _ _ _ H13); simple induction 1.
- intros.
- rewrite <- H11; rewrite <- H16; auto with sets.
-Qed.
-
-
-Lemma dist_aux :
- forall z:List, Descl z -> forall x y:List, z = x ++ y -> Descl x /\ Descl y.
-Proof.
- intros z D.
- elim D.
- intros.
- cut (x ++ y = Nil); auto with sets; intro.
- generalize (app_eq_nil _ _ H0); simple induction 1.
- intros.
- rewrite H2; rewrite H3; split; apply d_nil.
-
- intros.
- cut (x0 ++ y = Cons x Nil); auto with sets.
- intros E.
- generalize (app_eq_unit _ _ E); simple induction 1.
- simple induction 1; intros.
- rewrite H2; rewrite H3; split.
- apply d_nil.
-
- apply d_one.
-
- simple induction 1; intros.
- rewrite H2; rewrite H3; split.
- apply d_one.
-
- apply d_nil.
-
- do 5 intro.
- intros Hind.
- do 2 intro.
- generalize x0.
- apply rev_ind with
- (A := A)
- (P := fun y0:List =>
- forall x0:List,
- (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ y0 ->
- Descl x0 /\ Descl y0).
-
- intro.
- generalize (app_nil_end x1); simple induction 1; simple induction 1.
- split. apply d_conc; auto with sets.
-
- apply d_nil.
-
- do 3 intro.
- generalize x1.
- apply rev_ind with
- (A := A)
- (P := fun l0:List =>
- forall (x1:A) (x0:List),
- (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ l0 ++ Cons x1 Nil ->
- Descl x0 /\ Descl (l0 ++ Cons x1 Nil)).
-
-
- simpl in |- *.
- split.
- generalize (app_inj_tail _ _ _ _ H2); simple induction 1.
- simple induction 1; auto with sets.
-
- apply d_one.
- do 5 intro.
- generalize (app_ass x4 (l1 ++ Cons x2 Nil) (Cons x3 Nil)).
- simple induction 1.
- generalize (app_ass x4 l1 (Cons x2 Nil)); simple induction 1.
- intro E.
- generalize (app_inj_tail _ _ _ _ E).
- simple induction 1; intros.
- generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
- rewrite <- H7; rewrite <- H10; generalize H6.
- generalize (app_ass x4 l1 (Cons x2 Nil)); intro E1.
- rewrite E1.
- intro.
- generalize (Hind x4 (l1 ++ Cons x2 Nil) H11).
- simple induction 1; split.
- auto with sets.
-
- generalize H14.
- rewrite <- H10; intro.
- apply d_conc; auto with sets.
-Qed.
-
-
-
-Lemma dist_Desc_concat :
- forall x y:List, Descl (x ++ y) -> Descl x /\ Descl y.
-Proof.
- intros.
- apply (dist_aux (x ++ y) H x y); auto with sets.
-Qed.
-
-
-Lemma desc_end :
- forall (a b:A) (x:List),
- Descl (x ++ Cons a Nil) /\ ltl (x ++ Cons a Nil) (Cons b Nil) ->
- clos_trans A leA a b.
-
-Proof.
- intros a b x.
- case x.
- simpl in |- *.
- simple induction 1.
- intros.
- inversion H1; auto with sets.
- inversion H3.
-
- simple induction 1.
- generalize (app_comm_cons l (Cons a Nil) a0).
- intros E; rewrite <- E; intros.
- generalize (desc_tail l a a0 H0); intro.
- inversion H1.
- apply t_trans with (y := a0); auto with sets.
-
- inversion H4.
-Qed.
-
-
-
-
-Lemma ltl_unit :
- forall (x:List) (a b:A),
- Descl (x ++ Cons a Nil) ->
- ltl (x ++ Cons a Nil) (Cons b Nil) -> ltl x (Cons b Nil).
-Proof.
- intro.
- case x.
- intros; apply (Lt_nil A leA).
-
- simpl in |- *; intros.
- inversion_clear H0.
- apply (Lt_hd A leA a b); auto with sets.
-
- inversion_clear H1.
-Qed.
-
-
-Lemma acc_app :
- forall (x1 x2:List) (y1:Descl (x1 ++ x2)),
- Acc Lex_Exp << x1 ++ x2, y1 >> ->
- forall (x:List) (y:Descl x), ltl x (x1 ++ x2) -> Acc Lex_Exp << x, y >>.
-Proof.
- intros.
- apply (Acc_inv (R:=Lex_Exp) (x:=<< x1 ++ x2, y1 >>)).
- auto with sets.
-
- unfold lex_exp in |- *; simpl in |- *; auto with sets.
-Qed.
-
-
-Theorem wf_lex_exp : well_founded leA -> well_founded Lex_Exp.
-Proof.
- unfold well_founded at 2 in |- *.
- simple induction a; intros x y.
- apply Acc_intro.
- simple induction y0.
- unfold lex_exp at 1 in |- *; simpl in |- *.
- apply rev_ind with
- (A := A)
- (P := fun x:List =>
- forall (x0:List) (y:Descl x0), ltl x0 x -> Acc Lex_Exp << x0, y >>).
- intros.
- inversion_clear H0.
-
- intro.
- generalize (well_founded_ind (wf_clos_trans A leA H)).
- intros GR.
- apply GR with
- (P := fun x0:A =>
- forall l:List,
- (forall (x1:List) (y:Descl x1),
- ltl x1 l -> Acc Lex_Exp << x1, y >>) ->
- forall (x1:List) (y:Descl x1),
- ltl x1 (l ++ Cons x0 Nil) -> Acc Lex_Exp << x1, y >>).
- intro; intros HInd; intros.
- generalize (right_prefix x2 l (Cons x1 Nil) H1).
- simple induction 1.
- intro; apply (H0 x2 y1 H3).
-
- simple induction 1.
- intro; simple induction 1.
- clear H4 H2.
- intro; generalize y1; clear y1.
- rewrite H2.
- apply rev_ind with
- (A := A)
- (P := fun x3:List =>
- forall y1:Descl (l ++ x3),
- ltl x3 (Cons x1 Nil) -> Acc Lex_Exp << l ++ x3, y1 >>).
- intros.
- generalize (app_nil_end l); intros Heq.
- generalize y1.
- clear y1.
- rewrite <- Heq.
- intro.
- apply Acc_intro.
- simple induction y2.
- unfold lex_exp at 1 in |- *.
- simpl in |- *; intros x4 y3. intros.
- apply (H0 x4 y3); auto with sets.
-
- intros.
- generalize (dist_Desc_concat l (l0 ++ Cons x4 Nil) y1).
- simple induction 1.
- intros.
- generalize (desc_end x4 x1 l0 (conj H8 H5)); intros.
- generalize y1.
- rewrite <- (app_ass l l0 (Cons x4 Nil)); intro.
- generalize (HInd x4 H9 (l ++ l0)); intros HInd2.
- generalize (ltl_unit l0 x4 x1 H8 H5); intro.
- generalize (dist_Desc_concat (l ++ l0) (Cons x4 Nil) y2).
- simple induction 1; intros.
- generalize (H4 H12 H10); intro.
- generalize (Acc_inv H14).
- generalize (acc_app l l0 H12 H14).
- intros f g.
- generalize (HInd2 f); intro.
- apply Acc_intro.
- simple induction y3.
- unfold lex_exp at 1 in |- *; simpl in |- *; intros.
- apply H15; auto with sets.
-Qed.
+ Variable A : Set.
+ Variable leA : A -> A -> Prop.
+
+ Notation Power := (Pow A leA).
+ Notation Lex_Exp := (lex_exp A leA).
+ Notation ltl := (Ltl A leA).
+ Notation Descl := (Desc A leA).
+
+ Notation List := (list A).
+ Notation Nil := (nil (A:=A)).
+ (* useless but symmetric *)
+ Notation Cons := (cons (A:=A)).
+ Notation "<< x , y >>" := (exist Descl x y) (at level 0, x, y at level 100).
+
+ (* Hint Resolve d_one d_nil t_step. *)
+
+ Lemma left_prefix : forall x y z:List, ltl (x ++ y) z -> ltl x z.
+ Proof.
+ simple induction x.
+ simple induction z.
+ simpl in |- *; intros H.
+ inversion_clear H.
+ simpl in |- *; intros; apply (Lt_nil A leA).
+ intros a l HInd.
+ simpl in |- *.
+ intros.
+ inversion_clear H.
+ apply (Lt_hd A leA); auto with sets.
+ apply (Lt_tl A leA).
+ apply (HInd y y0); auto with sets.
+ Qed.
+
+
+ Lemma right_prefix :
+ forall x y z:List,
+ ltl x (y ++ z) -> ltl x y \/ (exists y' : List, x = y ++ y' /\ ltl y' z).
+ Proof.
+ intros x y; generalize x.
+ elim y; simpl in |- *.
+ right.
+ exists x0; auto with sets.
+ intros.
+ inversion H0.
+ left; apply (Lt_nil A leA).
+ left; apply (Lt_hd A leA); auto with sets.
+ generalize (H x1 z H3).
+ simple induction 1.
+ left; apply (Lt_tl A leA); auto with sets.
+ simple induction 1.
+ simple induction 1; intros.
+ rewrite H8.
+ right; exists x2; auto with sets.
+ Qed.
+
+ Lemma desc_prefix : forall (x:List) (a:A), Descl (x ++ Cons a Nil) -> Descl x.
+ Proof.
+ intros.
+ inversion H.
+ generalize (app_cons_not_nil _ _ _ H1); simple induction 1.
+ cut (x ++ Cons a Nil = Cons x0 Nil); auto with sets.
+ intro.
+ generalize (app_eq_unit _ _ H0).
+ simple induction 1; simple induction 1; intros.
+ rewrite H4; auto using d_nil with sets.
+ discriminate H5.
+ generalize (app_inj_tail _ _ _ _ H0).
+ simple induction 1; intros.
+ rewrite <- H4; auto with sets.
+ Qed.
+
+ Lemma desc_tail :
+ forall (x:List) (a b:A),
+ Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b.
+ Proof.
+ intro.
+ apply rev_ind with
+ (A := A)
+ (P := fun x:List =>
+ forall a b:A,
+ Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b).
+ intros.
+
+ inversion H.
+ cut (Cons b (Cons a Nil) = (Nil ++ Cons b Nil) ++ Cons a Nil);
+ auto with sets; intro.
+ generalize H0.
+ intro.
+ generalize (app_inj_tail (l ++ Cons y Nil) (Nil ++ Cons b Nil) _ _ H4);
+ simple induction 1.
+ intros.
+
+ generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
+ generalize H1.
+ rewrite <- H10; rewrite <- H7; intro.
+ apply (t_step A leA); auto with sets.
+
+ intros.
+ inversion H0.
+ generalize (app_cons_not_nil _ _ _ H3); intro.
+ elim H1.
+
+ generalize H0.
+ generalize (app_comm_cons (l ++ Cons x0 Nil) (Cons a Nil) b);
+ simple induction 1.
+ intro.
+ generalize (desc_prefix (Cons b (l ++ Cons x0 Nil)) a H5); intro.
+ generalize (H x0 b H6).
+ intro.
+ apply t_trans with (A := A) (y := x0); auto with sets.
+
+ apply t_step.
+ generalize H1.
+ rewrite H4; intro.
+
+ generalize (app_inj_tail _ _ _ _ H8); simple induction 1.
+ intros.
+ generalize H2; generalize (app_comm_cons l (Cons x0 Nil) b).
+ intro.
+ generalize H10.
+ rewrite H12; intro.
+ generalize (app_inj_tail _ _ _ _ H13); simple induction 1.
+ intros.
+ rewrite <- H11; rewrite <- H16; auto with sets.
+ Qed.
+
+
+ Lemma dist_aux :
+ forall z:List, Descl z -> forall x y:List, z = x ++ y -> Descl x /\ Descl y.
+ Proof.
+ intros z D.
+ elim D.
+ intros.
+ cut (x ++ y = Nil); auto with sets; intro.
+ generalize (app_eq_nil _ _ H0); simple induction 1.
+ intros.
+ rewrite H2; rewrite H3; split; apply d_nil.
+
+ intros.
+ cut (x0 ++ y = Cons x Nil); auto with sets.
+ intros E.
+ generalize (app_eq_unit _ _ E); simple induction 1.
+ simple induction 1; intros.
+ rewrite H2; rewrite H3; split.
+ apply d_nil.
+
+ apply d_one.
+
+ simple induction 1; intros.
+ rewrite H2; rewrite H3; split.
+ apply d_one.
+
+ apply d_nil.
+
+ do 5 intro.
+ intros Hind.
+ do 2 intro.
+ generalize x0.
+ apply rev_ind with
+ (A := A)
+ (P := fun y0:List =>
+ forall x0:List,
+ (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ y0 ->
+ Descl x0 /\ Descl y0).
+
+ intro.
+ generalize (app_nil_end x1); simple induction 1; simple induction 1.
+ split. apply d_conc; auto with sets.
+
+ apply d_nil.
+
+ do 3 intro.
+ generalize x1.
+ apply rev_ind with
+ (A := A)
+ (P := fun l0:List =>
+ forall (x1:A) (x0:List),
+ (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ l0 ++ Cons x1 Nil ->
+ Descl x0 /\ Descl (l0 ++ Cons x1 Nil)).
+
+
+ simpl in |- *.
+ split.
+ generalize (app_inj_tail _ _ _ _ H2); simple induction 1.
+ simple induction 1; auto with sets.
+
+ apply d_one.
+ do 5 intro.
+ generalize (app_ass x4 (l1 ++ Cons x2 Nil) (Cons x3 Nil)).
+ simple induction 1.
+ generalize (app_ass x4 l1 (Cons x2 Nil)); simple induction 1.
+ intro E.
+ generalize (app_inj_tail _ _ _ _ E).
+ simple induction 1; intros.
+ generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
+ rewrite <- H7; rewrite <- H10; generalize H6.
+ generalize (app_ass x4 l1 (Cons x2 Nil)); intro E1.
+ rewrite E1.
+ intro.
+ generalize (Hind x4 (l1 ++ Cons x2 Nil) H11).
+ simple induction 1; split.
+ auto with sets.
+
+ generalize H14.
+ rewrite <- H10; intro.
+ apply d_conc; auto with sets.
+ Qed.
+
+
+
+ Lemma dist_Desc_concat :
+ forall x y:List, Descl (x ++ y) -> Descl x /\ Descl y.
+ Proof.
+ intros.
+ apply (dist_aux (x ++ y) H x y); auto with sets.
+ Qed.
+
+ Lemma desc_end :
+ forall (a b:A) (x:List),
+ Descl (x ++ Cons a Nil) /\ ltl (x ++ Cons a Nil) (Cons b Nil) ->
+ clos_trans A leA a b.
+ Proof.
+ intros a b x.
+ case x.
+ simpl in |- *.
+ simple induction 1.
+ intros.
+ inversion H1; auto with sets.
+ inversion H3.
+
+ simple induction 1.
+ generalize (app_comm_cons l (Cons a Nil) a0).
+ intros E; rewrite <- E; intros.
+ generalize (desc_tail l a a0 H0); intro.
+ inversion H1.
+ apply t_trans with (y := a0); auto with sets.
+
+ inversion H4.
+ Qed.
+
+
+
+
+ Lemma ltl_unit :
+ forall (x:List) (a b:A),
+ Descl (x ++ Cons a Nil) ->
+ ltl (x ++ Cons a Nil) (Cons b Nil) -> ltl x (Cons b Nil).
+ Proof.
+ intro.
+ case x.
+ intros; apply (Lt_nil A leA).
+
+ simpl in |- *; intros.
+ inversion_clear H0.
+ apply (Lt_hd A leA a b); auto with sets.
+
+ inversion_clear H1.
+ Qed.
+
+
+ Lemma acc_app :
+ forall (x1 x2:List) (y1:Descl (x1 ++ x2)),
+ Acc Lex_Exp << x1 ++ x2, y1 >> ->
+ forall (x:List) (y:Descl x), ltl x (x1 ++ x2) -> Acc Lex_Exp << x, y >>.
+ Proof.
+ intros.
+ apply (Acc_inv (R:=Lex_Exp) (x:=<< x1 ++ x2, y1 >>)).
+ auto with sets.
+
+ unfold lex_exp in |- *; simpl in |- *; auto with sets.
+ Qed.
+
+
+ Theorem wf_lex_exp : well_founded leA -> well_founded Lex_Exp.
+ Proof.
+ unfold well_founded at 2 in |- *.
+ simple induction a; intros x y.
+ apply Acc_intro.
+ simple induction y0.
+ unfold lex_exp at 1 in |- *; simpl in |- *.
+ apply rev_ind with
+ (A := A)
+ (P := fun x:List =>
+ forall (x0:List) (y:Descl x0), ltl x0 x -> Acc Lex_Exp << x0, y >>).
+ intros.
+ inversion_clear H0.
+
+ intro.
+ generalize (well_founded_ind (wf_clos_trans A leA H)).
+ intros GR.
+ apply GR with
+ (P := fun x0:A =>
+ forall l:List,
+ (forall (x1:List) (y:Descl x1),
+ ltl x1 l -> Acc Lex_Exp << x1, y >>) ->
+ forall (x1:List) (y:Descl x1),
+ ltl x1 (l ++ Cons x0 Nil) -> Acc Lex_Exp << x1, y >>).
+ intro; intros HInd; intros.
+ generalize (right_prefix x2 l (Cons x1 Nil) H1).
+ simple induction 1.
+ intro; apply (H0 x2 y1 H3).
+
+ simple induction 1.
+ intro; simple induction 1.
+ clear H4 H2.
+ intro; generalize y1; clear y1.
+ rewrite H2.
+ apply rev_ind with
+ (A := A)
+ (P := fun x3:List =>
+ forall y1:Descl (l ++ x3),
+ ltl x3 (Cons x1 Nil) -> Acc Lex_Exp << l ++ x3, y1 >>).
+ intros.
+ generalize (app_nil_end l); intros Heq.
+ generalize y1.
+ clear y1.
+ rewrite <- Heq.
+ intro.
+ apply Acc_intro.
+ simple induction y2.
+ unfold lex_exp at 1 in |- *.
+ simpl in |- *; intros x4 y3. intros.
+ apply (H0 x4 y3); auto with sets.
+
+ intros.
+ generalize (dist_Desc_concat l (l0 ++ Cons x4 Nil) y1).
+ simple induction 1.
+ intros.
+ generalize (desc_end x4 x1 l0 (conj H8 H5)); intros.
+ generalize y1.
+ rewrite <- (app_ass l l0 (Cons x4 Nil)); intro.
+ generalize (HInd x4 H9 (l ++ l0)); intros HInd2.
+ generalize (ltl_unit l0 x4 x1 H8 H5); intro.
+ generalize (dist_Desc_concat (l ++ l0) (Cons x4 Nil) y2).
+ simple induction 1; intros.
+ generalize (H4 H12 H10); intro.
+ generalize (Acc_inv H14).
+ generalize (acc_app l l0 H12 H14).
+ intros f g.
+ generalize (HInd2 f); intro.
+ apply Acc_intro.
+ simple induction y3.
+ unfold lex_exp at 1 in |- *; simpl in |- *; intros.
+ apply H15; auto with sets.
+ Qed.
End Wf_Lexicographic_Exponentiation.