summaryrefslogtreecommitdiff
path: root/theories/Wellfounded/Disjoint_Union.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Wellfounded/Disjoint_Union.v')
-rw-r--r--theories/Wellfounded/Disjoint_Union.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Wellfounded/Disjoint_Union.v b/theories/Wellfounded/Disjoint_Union.v
index 6adf629d..785d623b 100644
--- a/theories/Wellfounded/Disjoint_Union.v
+++ b/theories/Wellfounded/Disjoint_Union.v
@@ -6,11 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Disjoint_Union.v 10681 2008-03-16 13:40:45Z msozeau $ i*)
+(*i $Id$ i*)
(** Author: Cristina Cornes
- From : Constructing Recursion Operators in Type Theory
- L. Paulson JSC (1986) 2, 325-355 *)
+ From : Constructing Recursion Operators in Type Theory
+ L. Paulson JSC (1986) 2, 325-355 *)
Require Import Relation_Operators.
@@ -20,7 +20,7 @@ Section Wf_Disjoint_Union.
Variable leB : B -> B -> Prop.
Notation Le_AsB := (le_AsB A B leA leB).
-
+
Lemma acc_A_sum : forall x:A, Acc leA x -> Acc Le_AsB (inl B x).
Proof.
induction 1.
@@ -47,7 +47,7 @@ Section Wf_Disjoint_Union.
destruct a as [a| b].
apply (acc_A_sum a).
apply (H a).
-
+
apply (acc_B_sum H b).
apply (H0 b).
Qed.