diff options
Diffstat (limited to 'theories/Vectors/VectorDef.v')
-rw-r--r-- | theories/Vectors/VectorDef.v | 317 |
1 files changed, 317 insertions, 0 deletions
diff --git a/theories/Vectors/VectorDef.v b/theories/Vectors/VectorDef.v new file mode 100644 index 00000000..0fee50ff --- /dev/null +++ b/theories/Vectors/VectorDef.v @@ -0,0 +1,317 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(** Definitions of Vectors and functions to use them + + Author: Pierre Boutillier + Institution: PPS, INRIA 12/2010 +*) + +(** +Names should be "caml name in list.ml" if exists and order of arguments +have to be the same. complain if you see mistakes ... *) + +Require Import Arith_base. +Require Vectors.Fin. +Import EqNotations. +Open Local Scope nat_scope. + +(** +A vector is a list of size n whose elements belong to a set A. *) + +Inductive t A : nat -> Type := + |nil : t A 0 + |cons : forall (h:A) (n:nat), t A n -> t A (S n). + +Local Notation "[]" := (nil _). +Local Notation "h :: t" := (cons _ h _ t) (at level 60, right associativity). + +Section SCHEMES. + +(** An induction scheme for non-empty vectors *) + +Definition rectS {A} (P:forall {n}, t A (S n) -> Type) + (bas: forall a: A, P (a :: [])) + (rect: forall a {n} (v: t A (S n)), P v -> P (a :: v)) := + fix rectS_fix {n} (v: t A (S n)) : P v := + match v with + |nil => @id + |cons a 0 v => + match v as vnn in t _ nn + return + match nn,vnn with + |0,vm => P (a :: vm) + |S _,_ => ID + end + with + |nil => bas a + |_ :: _ => @id + end + |cons a (S nn') v => rect a v (rectS_fix v) + end. + +(** An induction scheme for 2 vectors of same length *) +Definition rect2 {A B} (P:forall {n}, t A n -> t B n -> Type) + (bas : P [] []) (rect : forall {n v1 v2}, P v1 v2 -> + forall a b, P (a :: v1) (b :: v2)) := +fix rect2_fix {n} (v1:t A n): + forall v2 : t B n, P v1 v2 := +match v1 as v1' in t _ n1 + return forall v2 : t B n1, P v1' v2 with + |[] => fun v2 => + match v2 with + |[] => bas + |_ :: _ => @id + end + |h1 :: t1 => fun v2 => + match v2 with + |[] => @id + |h2 :: t2 => fun t1' => + rect (rect2_fix t1' t2) h1 h2 + end t1 +end. + +(** A vector of length [0] is [nil] *) +Definition case0 {A} (P:t A 0 -> Type) (H:P (nil A)) v:P v := +match v with + |[] => H +end. + +(** A vector of length [S _] is [cons] *) +Definition caseS {A} (P : forall n, t A (S n) -> Type) + (H : forall h {n} t, @P n (h :: t)) {n} v : P n v := +match v with + |[] => @id (* Why needed ? *) + |h :: t => H h t +end. +End SCHEMES. + +Section BASES. +(** The first element of a non empty vector *) +Definition hd {A} {n} (v:t A (S n)) := Eval cbv delta beta in +(caseS (fun n v => A) (fun h n t => h) v). + +(** The last element of an non empty vector *) +Definition last {A} {n} (v : t A (S n)) := Eval cbv delta in +(rectS (fun _ _ => A) (fun a => a) (fun _ _ _ H => H) v). + +(** Build a vector of n{^ th} [a] *) +Fixpoint const {A} (a:A) (n:nat) := + match n return t A n with + | O => nil A + | S n => a :: (const a n) + end. + +(** The [p]{^ th} element of a vector of length [m]. + +Computational behavior of this function should be the same as +ocaml function. *) +Fixpoint nth {A} {m} (v' : t A m) (p : Fin.t m) {struct p} : A := +match p in Fin.t m' return t A m' -> A with + |Fin.F1 q => fun v => caseS (fun n v' => A) (fun h n t => h) v + |Fin.FS q p' => fun v => (caseS (fun n v' => Fin.t n -> A) + (fun h n t p0 => nth t p0) v) p' +end v'. + +(** An equivalent definition of [nth]. *) +Definition nth_order {A} {n} (v: t A n) {p} (H: p < n) := +(nth v (Fin.of_nat_lt H)). + +(** Put [a] at the p{^ th} place of [v] *) +Fixpoint replace {A n} (v : t A n) (p: Fin.t n) (a : A) {struct p}: t A n := + match p with + |Fin.F1 k => fun v': t A (S k) => caseS (fun n _ => t A (S n)) (fun h _ t => a :: t) v' + |Fin.FS k p' => fun v' => + (caseS (fun n _ => Fin.t n -> t A (S n)) (fun h _ t p2 => h :: (replace t p2 a)) v') p' + end v. + +(** Version of replace with [lt] *) +Definition replace_order {A n} (v: t A n) {p} (H: p < n) := +replace v (Fin.of_nat_lt H). + +(** Remove the first element of a non empty vector *) +Definition tl {A} {n} (v:t A (S n)) := Eval cbv delta beta in +(caseS (fun n v => t A n) (fun h n t => t) v). + +(** Remove last element of a non-empty vector *) +Definition shiftout {A} {n:nat} (v:t A (S n)) : t A n := +Eval cbv delta beta in (rectS (fun n _ => t A n) (fun a => []) + (fun h _ _ H => h :: H) v). + +(** Add an element at the end of a vector *) +Fixpoint shiftin {A} {n:nat} (a : A) (v:t A n) : t A (S n) := +match v with + |[] => a :: [] + |h :: t => h :: (shiftin a t) +end. + +(** Copy last element of a vector *) +Definition shiftrepeat {A} {n} (v:t A (S n)) : t A (S (S n)) := +Eval cbv delta beta in (rectS (fun n _ => t A (S (S n))) + (fun h => h :: h :: []) (fun h _ _ H => h :: H) v). + +(** Remove [p] last elements of a vector *) +Lemma trunc : forall {A} {n} (p:nat), n > p -> t A n + -> t A (n - p). +Proof. + induction p as [| p f]; intros H v. + rewrite <- minus_n_O. + exact v. + + apply shiftout. + + rewrite minus_Sn_m. + apply f. + auto with *. + exact v. + auto with *. +Defined. + +(** Concatenation of two vectors *) +Fixpoint append {A}{n}{p} (v:t A n) (w:t A p):t A (n+p) := + match v with + | [] => w + | a :: v' => a :: (append v' w) + end. + +Infix "++" := append. + +(** Two definitions of the tail recursive function that appends two lists but +reverses the first one *) + +(** This one has the exact expected computational behavior *) +Fixpoint rev_append_tail {A n p} (v : t A n) (w: t A p) + : t A (tail_plus n p) := + match v with + | [] => w + | a :: v' => rev_append_tail v' (a :: w) + end. + +Import EqdepFacts. + +(** This one has a better type *) +Definition rev_append {A n p} (v: t A n) (w: t A p) + :t A (n + p) := + rew <- (plus_tail_plus n p) in (rev_append_tail v w). + +(** rev [a₁ ; a₂ ; .. ; an] is [an ; a{n-1} ; .. ; a₁] + +Caution : There is a lot of rewrite garbage in this definition *) +Definition rev {A n} (v : t A n) : t A n := + rew <- (plus_n_O _) in (rev_append v []). + +End BASES. +Local Notation "v [@ p ]" := (nth v p) (at level 1). + +Section ITERATORS. +(** * Here are special non dependent useful instantiation of induction +schemes *) + +(** Uniform application on the arguments of the vector *) +Definition map {A} {B} (f : A -> B) : forall {n} (v:t A n), t B n := + fix map_fix {n} (v : t A n) : t B n := match v with + | [] => [] + | a :: v' => (f a) :: (map_fix v') + end. + +(** map2 g [x1 .. xn] [y1 .. yn] = [(g x1 y1) .. (g xn yn)] *) +Definition map2 {A B C} (g:A -> B -> C) {n} (v1:t A n) (v2:t B n) + : t C n := +Eval cbv delta beta in rect2 (fun n _ _ => t C n) (nil C) + (fun _ _ _ H a b => (g a b) :: H) v1 v2. + +(** fold_left f b [x1 .. xn] = f .. (f (f b x1) x2) .. xn *) +Definition fold_left {A B:Type} (f:B->A->B): forall (b:B) {n} (v:t A n), B := + fix fold_left_fix (b:B) {n} (v : t A n) : B := match v with + | [] => b + | a :: w => (fold_left_fix (f b a) w) + end. + +(** fold_right f [x1 .. xn] b = f x1 (f x2 .. (f xn b) .. ) *) +Definition fold_right {A B : Type} (f : A->B->B) := + fix fold_right_fix {n} (v : t A n) (b:B) + {struct v} : B := + match v with + | [] => b + | a :: w => f a (fold_right_fix w b) + end. + +(** fold_right2 g [x1 .. xn] [y1 .. yn] c = g x1 y1 (g x2 y2 .. (g xn yn c) .. ) *) +Definition fold_right2 {A B C} (g:A -> B -> C -> C) {n} (v:t A n) + (w : t B n) (c:C) : C := +Eval cbv delta beta in rect2 (fun _ _ _ => C) c + (fun _ _ _ H a b => g a b H) v w. + +(** fold_left2 f b [x1 .. xn] [y1 .. yn] = g .. (g (g a x1 y1) x2 y2) .. xn yn *) +Definition fold_left2 {A B C: Type} (f : A -> B -> C -> A) := +fix fold_left2_fix (a : A) {n} (v : t B n) : t C n -> A := +match v in t _ n0 return t C n0 -> A with + |[] => fun w => match w in t _ n1 + return match n1 with |0 => A |S _ => @ID end with + |[] => a + |_ :: _ => @id end + |cons vh vn vt => fun w => match w in t _ n1 + return match n1 with |0 => @ID |S n => t B n -> A end with + |[] => @id + |wh :: wt => fun vt' => fold_left2_fix (f a vh wh) vt' wt end vt +end. + +End ITERATORS. + +Section SCANNING. +Inductive Forall {A} (P: A -> Prop): forall {n} (v: t A n), Prop := + |Forall_nil: Forall P [] + |Forall_cons {n} x (v: t A n): P x -> Forall P v -> Forall P (x::v). +Hint Constructors Forall. + +Inductive Exists {A} (P:A->Prop): forall {n}, t A n -> Prop := + |Exists_cons_hd {m} x (v: t A m): P x -> Exists P (x::v) + |Exists_cons_tl {m} x (v: t A m): Exists P v -> Exists P (x::v). +Hint Constructors Exists. + +Inductive In {A} (a:A): forall {n}, t A n -> Prop := + |In_cons_hd {m} (v: t A m): In a (a::v) + |In_cons_tl {m} x (v: t A m): In a v -> In a (x::v). +Hint Constructors In. + +Inductive Forall2 {A B} (P:A->B->Prop): forall {n}, t A n -> t B n -> Prop := + |Forall2_nil: Forall2 P [] [] + |Forall2_cons {m} x1 x2 (v1:t A m) v2: P x1 x2 -> Forall2 P v1 v2 -> + Forall2 P (x1::v1) (x2::v2). +Hint Constructors Forall2. + +Inductive Exists2 {A B} (P:A->B->Prop): forall {n}, t A n -> t B n -> Prop := + |Exists2_cons_hd {m} x1 x2 (v1: t A m) (v2: t B m): P x1 x2 -> Exists2 P (x1::v1) (x2::v2) + |Exists2_cons_tl {m} x1 x2 (v1:t A m) v2: Exists2 P v1 v2 -> Exists2 P (x1::v1) (x2::v2). +Hint Constructors Exists2. + +End SCANNING. + +Section VECTORLIST. +(** * vector <=> list functions *) + +Fixpoint of_list {A} (l : list A) : t A (length l) := +match l as l' return t A (length l') with + |Datatypes.nil => [] + |(h :: tail)%list => (h :: (of_list tail)) +end. + +Definition to_list {A}{n} (v : t A n) : list A := +Eval cbv delta beta in fold_right (fun h H => Datatypes.cons h H) v Datatypes.nil. +End VECTORLIST. + +Module VectorNotations. +Notation "[]" := [] : vector_scope. +Notation "h :: t" := (h :: t) (at level 60, right associativity) + : vector_scope. +Notation " [ x ] " := (x :: []) : vector_scope. +Notation " [ x ; .. ; y ] " := (cons _ x _ .. (cons _ y _ (nil _)) ..) : vector_scope +. +Notation "v [@ p ]" := (nth v p) (at level 1, format "v [@ p ]") : vector_scope. +Open Scope vector_scope. +End VectorNotations. |