summaryrefslogtreecommitdiff
path: root/theories/Vectors/VectorDef.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Vectors/VectorDef.v')
-rw-r--r--theories/Vectors/VectorDef.v317
1 files changed, 317 insertions, 0 deletions
diff --git a/theories/Vectors/VectorDef.v b/theories/Vectors/VectorDef.v
new file mode 100644
index 00000000..0fee50ff
--- /dev/null
+++ b/theories/Vectors/VectorDef.v
@@ -0,0 +1,317 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Definitions of Vectors and functions to use them
+
+ Author: Pierre Boutillier
+ Institution: PPS, INRIA 12/2010
+*)
+
+(**
+Names should be "caml name in list.ml" if exists and order of arguments
+have to be the same. complain if you see mistakes ... *)
+
+Require Import Arith_base.
+Require Vectors.Fin.
+Import EqNotations.
+Open Local Scope nat_scope.
+
+(**
+A vector is a list of size n whose elements belong to a set A. *)
+
+Inductive t A : nat -> Type :=
+ |nil : t A 0
+ |cons : forall (h:A) (n:nat), t A n -> t A (S n).
+
+Local Notation "[]" := (nil _).
+Local Notation "h :: t" := (cons _ h _ t) (at level 60, right associativity).
+
+Section SCHEMES.
+
+(** An induction scheme for non-empty vectors *)
+
+Definition rectS {A} (P:forall {n}, t A (S n) -> Type)
+ (bas: forall a: A, P (a :: []))
+ (rect: forall a {n} (v: t A (S n)), P v -> P (a :: v)) :=
+ fix rectS_fix {n} (v: t A (S n)) : P v :=
+ match v with
+ |nil => @id
+ |cons a 0 v =>
+ match v as vnn in t _ nn
+ return
+ match nn,vnn with
+ |0,vm => P (a :: vm)
+ |S _,_ => ID
+ end
+ with
+ |nil => bas a
+ |_ :: _ => @id
+ end
+ |cons a (S nn') v => rect a v (rectS_fix v)
+ end.
+
+(** An induction scheme for 2 vectors of same length *)
+Definition rect2 {A B} (P:forall {n}, t A n -> t B n -> Type)
+ (bas : P [] []) (rect : forall {n v1 v2}, P v1 v2 ->
+ forall a b, P (a :: v1) (b :: v2)) :=
+fix rect2_fix {n} (v1:t A n):
+ forall v2 : t B n, P v1 v2 :=
+match v1 as v1' in t _ n1
+ return forall v2 : t B n1, P v1' v2 with
+ |[] => fun v2 =>
+ match v2 with
+ |[] => bas
+ |_ :: _ => @id
+ end
+ |h1 :: t1 => fun v2 =>
+ match v2 with
+ |[] => @id
+ |h2 :: t2 => fun t1' =>
+ rect (rect2_fix t1' t2) h1 h2
+ end t1
+end.
+
+(** A vector of length [0] is [nil] *)
+Definition case0 {A} (P:t A 0 -> Type) (H:P (nil A)) v:P v :=
+match v with
+ |[] => H
+end.
+
+(** A vector of length [S _] is [cons] *)
+Definition caseS {A} (P : forall n, t A (S n) -> Type)
+ (H : forall h {n} t, @P n (h :: t)) {n} v : P n v :=
+match v with
+ |[] => @id (* Why needed ? *)
+ |h :: t => H h t
+end.
+End SCHEMES.
+
+Section BASES.
+(** The first element of a non empty vector *)
+Definition hd {A} {n} (v:t A (S n)) := Eval cbv delta beta in
+(caseS (fun n v => A) (fun h n t => h) v).
+
+(** The last element of an non empty vector *)
+Definition last {A} {n} (v : t A (S n)) := Eval cbv delta in
+(rectS (fun _ _ => A) (fun a => a) (fun _ _ _ H => H) v).
+
+(** Build a vector of n{^ th} [a] *)
+Fixpoint const {A} (a:A) (n:nat) :=
+ match n return t A n with
+ | O => nil A
+ | S n => a :: (const a n)
+ end.
+
+(** The [p]{^ th} element of a vector of length [m].
+
+Computational behavior of this function should be the same as
+ocaml function. *)
+Fixpoint nth {A} {m} (v' : t A m) (p : Fin.t m) {struct p} : A :=
+match p in Fin.t m' return t A m' -> A with
+ |Fin.F1 q => fun v => caseS (fun n v' => A) (fun h n t => h) v
+ |Fin.FS q p' => fun v => (caseS (fun n v' => Fin.t n -> A)
+ (fun h n t p0 => nth t p0) v) p'
+end v'.
+
+(** An equivalent definition of [nth]. *)
+Definition nth_order {A} {n} (v: t A n) {p} (H: p < n) :=
+(nth v (Fin.of_nat_lt H)).
+
+(** Put [a] at the p{^ th} place of [v] *)
+Fixpoint replace {A n} (v : t A n) (p: Fin.t n) (a : A) {struct p}: t A n :=
+ match p with
+ |Fin.F1 k => fun v': t A (S k) => caseS (fun n _ => t A (S n)) (fun h _ t => a :: t) v'
+ |Fin.FS k p' => fun v' =>
+ (caseS (fun n _ => Fin.t n -> t A (S n)) (fun h _ t p2 => h :: (replace t p2 a)) v') p'
+ end v.
+
+(** Version of replace with [lt] *)
+Definition replace_order {A n} (v: t A n) {p} (H: p < n) :=
+replace v (Fin.of_nat_lt H).
+
+(** Remove the first element of a non empty vector *)
+Definition tl {A} {n} (v:t A (S n)) := Eval cbv delta beta in
+(caseS (fun n v => t A n) (fun h n t => t) v).
+
+(** Remove last element of a non-empty vector *)
+Definition shiftout {A} {n:nat} (v:t A (S n)) : t A n :=
+Eval cbv delta beta in (rectS (fun n _ => t A n) (fun a => [])
+ (fun h _ _ H => h :: H) v).
+
+(** Add an element at the end of a vector *)
+Fixpoint shiftin {A} {n:nat} (a : A) (v:t A n) : t A (S n) :=
+match v with
+ |[] => a :: []
+ |h :: t => h :: (shiftin a t)
+end.
+
+(** Copy last element of a vector *)
+Definition shiftrepeat {A} {n} (v:t A (S n)) : t A (S (S n)) :=
+Eval cbv delta beta in (rectS (fun n _ => t A (S (S n)))
+ (fun h => h :: h :: []) (fun h _ _ H => h :: H) v).
+
+(** Remove [p] last elements of a vector *)
+Lemma trunc : forall {A} {n} (p:nat), n > p -> t A n
+ -> t A (n - p).
+Proof.
+ induction p as [| p f]; intros H v.
+ rewrite <- minus_n_O.
+ exact v.
+
+ apply shiftout.
+
+ rewrite minus_Sn_m.
+ apply f.
+ auto with *.
+ exact v.
+ auto with *.
+Defined.
+
+(** Concatenation of two vectors *)
+Fixpoint append {A}{n}{p} (v:t A n) (w:t A p):t A (n+p) :=
+ match v with
+ | [] => w
+ | a :: v' => a :: (append v' w)
+ end.
+
+Infix "++" := append.
+
+(** Two definitions of the tail recursive function that appends two lists but
+reverses the first one *)
+
+(** This one has the exact expected computational behavior *)
+Fixpoint rev_append_tail {A n p} (v : t A n) (w: t A p)
+ : t A (tail_plus n p) :=
+ match v with
+ | [] => w
+ | a :: v' => rev_append_tail v' (a :: w)
+ end.
+
+Import EqdepFacts.
+
+(** This one has a better type *)
+Definition rev_append {A n p} (v: t A n) (w: t A p)
+ :t A (n + p) :=
+ rew <- (plus_tail_plus n p) in (rev_append_tail v w).
+
+(** rev [a₁ ; a₂ ; .. ; an] is [an ; a{n-1} ; .. ; a₁]
+
+Caution : There is a lot of rewrite garbage in this definition *)
+Definition rev {A n} (v : t A n) : t A n :=
+ rew <- (plus_n_O _) in (rev_append v []).
+
+End BASES.
+Local Notation "v [@ p ]" := (nth v p) (at level 1).
+
+Section ITERATORS.
+(** * Here are special non dependent useful instantiation of induction
+schemes *)
+
+(** Uniform application on the arguments of the vector *)
+Definition map {A} {B} (f : A -> B) : forall {n} (v:t A n), t B n :=
+ fix map_fix {n} (v : t A n) : t B n := match v with
+ | [] => []
+ | a :: v' => (f a) :: (map_fix v')
+ end.
+
+(** map2 g [x1 .. xn] [y1 .. yn] = [(g x1 y1) .. (g xn yn)] *)
+Definition map2 {A B C} (g:A -> B -> C) {n} (v1:t A n) (v2:t B n)
+ : t C n :=
+Eval cbv delta beta in rect2 (fun n _ _ => t C n) (nil C)
+ (fun _ _ _ H a b => (g a b) :: H) v1 v2.
+
+(** fold_left f b [x1 .. xn] = f .. (f (f b x1) x2) .. xn *)
+Definition fold_left {A B:Type} (f:B->A->B): forall (b:B) {n} (v:t A n), B :=
+ fix fold_left_fix (b:B) {n} (v : t A n) : B := match v with
+ | [] => b
+ | a :: w => (fold_left_fix (f b a) w)
+ end.
+
+(** fold_right f [x1 .. xn] b = f x1 (f x2 .. (f xn b) .. ) *)
+Definition fold_right {A B : Type} (f : A->B->B) :=
+ fix fold_right_fix {n} (v : t A n) (b:B)
+ {struct v} : B :=
+ match v with
+ | [] => b
+ | a :: w => f a (fold_right_fix w b)
+ end.
+
+(** fold_right2 g [x1 .. xn] [y1 .. yn] c = g x1 y1 (g x2 y2 .. (g xn yn c) .. ) *)
+Definition fold_right2 {A B C} (g:A -> B -> C -> C) {n} (v:t A n)
+ (w : t B n) (c:C) : C :=
+Eval cbv delta beta in rect2 (fun _ _ _ => C) c
+ (fun _ _ _ H a b => g a b H) v w.
+
+(** fold_left2 f b [x1 .. xn] [y1 .. yn] = g .. (g (g a x1 y1) x2 y2) .. xn yn *)
+Definition fold_left2 {A B C: Type} (f : A -> B -> C -> A) :=
+fix fold_left2_fix (a : A) {n} (v : t B n) : t C n -> A :=
+match v in t _ n0 return t C n0 -> A with
+ |[] => fun w => match w in t _ n1
+ return match n1 with |0 => A |S _ => @ID end with
+ |[] => a
+ |_ :: _ => @id end
+ |cons vh vn vt => fun w => match w in t _ n1
+ return match n1 with |0 => @ID |S n => t B n -> A end with
+ |[] => @id
+ |wh :: wt => fun vt' => fold_left2_fix (f a vh wh) vt' wt end vt
+end.
+
+End ITERATORS.
+
+Section SCANNING.
+Inductive Forall {A} (P: A -> Prop): forall {n} (v: t A n), Prop :=
+ |Forall_nil: Forall P []
+ |Forall_cons {n} x (v: t A n): P x -> Forall P v -> Forall P (x::v).
+Hint Constructors Forall.
+
+Inductive Exists {A} (P:A->Prop): forall {n}, t A n -> Prop :=
+ |Exists_cons_hd {m} x (v: t A m): P x -> Exists P (x::v)
+ |Exists_cons_tl {m} x (v: t A m): Exists P v -> Exists P (x::v).
+Hint Constructors Exists.
+
+Inductive In {A} (a:A): forall {n}, t A n -> Prop :=
+ |In_cons_hd {m} (v: t A m): In a (a::v)
+ |In_cons_tl {m} x (v: t A m): In a v -> In a (x::v).
+Hint Constructors In.
+
+Inductive Forall2 {A B} (P:A->B->Prop): forall {n}, t A n -> t B n -> Prop :=
+ |Forall2_nil: Forall2 P [] []
+ |Forall2_cons {m} x1 x2 (v1:t A m) v2: P x1 x2 -> Forall2 P v1 v2 ->
+ Forall2 P (x1::v1) (x2::v2).
+Hint Constructors Forall2.
+
+Inductive Exists2 {A B} (P:A->B->Prop): forall {n}, t A n -> t B n -> Prop :=
+ |Exists2_cons_hd {m} x1 x2 (v1: t A m) (v2: t B m): P x1 x2 -> Exists2 P (x1::v1) (x2::v2)
+ |Exists2_cons_tl {m} x1 x2 (v1:t A m) v2: Exists2 P v1 v2 -> Exists2 P (x1::v1) (x2::v2).
+Hint Constructors Exists2.
+
+End SCANNING.
+
+Section VECTORLIST.
+(** * vector <=> list functions *)
+
+Fixpoint of_list {A} (l : list A) : t A (length l) :=
+match l as l' return t A (length l') with
+ |Datatypes.nil => []
+ |(h :: tail)%list => (h :: (of_list tail))
+end.
+
+Definition to_list {A}{n} (v : t A n) : list A :=
+Eval cbv delta beta in fold_right (fun h H => Datatypes.cons h H) v Datatypes.nil.
+End VECTORLIST.
+
+Module VectorNotations.
+Notation "[]" := [] : vector_scope.
+Notation "h :: t" := (h :: t) (at level 60, right associativity)
+ : vector_scope.
+Notation " [ x ] " := (x :: []) : vector_scope.
+Notation " [ x ; .. ; y ] " := (cons _ x _ .. (cons _ y _ (nil _)) ..) : vector_scope
+.
+Notation "v [@ p ]" := (nth v p) (at level 1, format "v [@ p ]") : vector_scope.
+Open Scope vector_scope.
+End VectorNotations.