diff options
Diffstat (limited to 'theories/Structures/OrdersLists.v')
-rw-r--r-- | theories/Structures/OrdersLists.v | 256 |
1 files changed, 256 insertions, 0 deletions
diff --git a/theories/Structures/OrdersLists.v b/theories/Structures/OrdersLists.v new file mode 100644 index 00000000..2ed07026 --- /dev/null +++ b/theories/Structures/OrdersLists.v @@ -0,0 +1,256 @@ +(***********************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) +(* \VV/ *************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(***********************************************************************) + +Require Export RelationPairs SetoidList Orders. + +Set Implicit Arguments. +Unset Strict Implicit. + +(** * Specialization of results about lists modulo. *) + +Module OrderedTypeLists (Import O:OrderedType). + +Section ForNotations. + +Notation In:=(InA eq). +Notation Inf:=(lelistA lt). +Notation Sort:=(sort lt). +Notation NoDup:=(NoDupA eq). + +Lemma In_eq : forall l x y, eq x y -> In x l -> In y l. +Proof. intros. rewrite <- H; auto. Qed. + +Lemma ListIn_In : forall l x, List.In x l -> In x l. +Proof. exact (In_InA eq_equiv). Qed. + +Lemma Inf_lt : forall l x y, lt x y -> Inf y l -> Inf x l. +Proof. exact (InfA_ltA lt_strorder). Qed. + +Lemma Inf_eq : forall l x y, eq x y -> Inf y l -> Inf x l. +Proof. exact (InfA_eqA eq_equiv lt_strorder lt_compat). Qed. + +Lemma Sort_Inf_In : forall l x a, Sort l -> Inf a l -> In x l -> lt a x. +Proof. exact (SortA_InfA_InA eq_equiv lt_strorder lt_compat). Qed. + +Lemma ListIn_Inf : forall l x, (forall y, List.In y l -> lt x y) -> Inf x l. +Proof. exact (@In_InfA t lt). Qed. + +Lemma In_Inf : forall l x, (forall y, In y l -> lt x y) -> Inf x l. +Proof. exact (InA_InfA eq_equiv (ltA:=lt)). Qed. + +Lemma Inf_alt : + forall l x, Sort l -> (Inf x l <-> (forall y, In y l -> lt x y)). +Proof. exact (InfA_alt eq_equiv lt_strorder lt_compat). Qed. + +Lemma Sort_NoDup : forall l, Sort l -> NoDup l. +Proof. exact (SortA_NoDupA eq_equiv lt_strorder lt_compat) . Qed. + +End ForNotations. + +Hint Resolve ListIn_In Sort_NoDup Inf_lt. +Hint Immediate In_eq Inf_lt. + +End OrderedTypeLists. + + + + + +(** * Results about keys and data as manipulated in FMaps. *) + + +Module KeyOrderedType(Import O:OrderedType). + Module Import MO:=OrderedTypeLists(O). + + Section Elt. + Variable elt : Type. + Notation key:=t. + + Local Open Scope signature_scope. + + Definition eqk : relation (key*elt) := eq @@1. + Definition eqke : relation (key*elt) := eq * Logic.eq. + Definition ltk : relation (key*elt) := lt @@1. + + Hint Unfold eqk eqke ltk. + + (* eqke is stricter than eqk *) + + Global Instance eqke_eqk : subrelation eqke eqk. + Proof. firstorder. Qed. + + (* eqk, eqke are equalities, ltk is a strict order *) + + Global Instance eqk_equiv : Equivalence eqk. + + Global Instance eqke_equiv : Equivalence eqke. + + Global Instance ltk_strorder : StrictOrder ltk. + + Global Instance ltk_compat : Proper (eqk==>eqk==>iff) ltk. + Proof. unfold eqk, ltk; auto with *. Qed. + + (* Additionnal facts *) + + Global Instance pair_compat : Proper (eq==>Logic.eq==>eqke) (@pair key elt). + Proof. apply pair_compat. Qed. + + Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'. + Proof. + intros e e' LT EQ; rewrite EQ in LT. + elim (StrictOrder_Irreflexive _ LT). + Qed. + + Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'. + Proof. + intros e e' LT EQ; rewrite EQ in LT. + elim (StrictOrder_Irreflexive _ LT). + Qed. + + Lemma InA_eqke_eqk : + forall x m, InA eqke x m -> InA eqk x m. + Proof. + unfold eqke, RelProd; induction 1; firstorder. + Qed. + Hint Resolve InA_eqke_eqk. + + Definition MapsTo (k:key)(e:elt):= InA eqke (k,e). + Definition In k m := exists e:elt, MapsTo k e m. + Notation Sort := (sort ltk). + Notation Inf := (lelistA ltk). + + Hint Unfold MapsTo In. + + (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *) + + Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l. + Proof. + firstorder. + exists x; auto. + induction H. + destruct y; compute in H. + exists e; left; auto. + destruct IHInA as [e H0]. + exists e; auto. + Qed. + + Lemma In_alt2 : forall k l, In k l <-> Exists (fun p => eq k (fst p)) l. + Proof. + unfold In, MapsTo. + setoid_rewrite Exists_exists; setoid_rewrite InA_alt. + firstorder. + exists (snd x), x; auto. + Qed. + + Lemma In_nil : forall k, In k nil <-> False. + Proof. + intros; rewrite In_alt2; apply Exists_nil. + Qed. + + Lemma In_cons : forall k p l, + In k (p::l) <-> eq k (fst p) \/ In k l. + Proof. + intros; rewrite !In_alt2, Exists_cons; intuition. + Qed. + + Global Instance MapsTo_compat : + Proper (eq==>Logic.eq==>equivlistA eqke==>iff) MapsTo. + Proof. + intros x x' Hx e e' He l l' Hl. unfold MapsTo. + rewrite Hx, He, Hl; intuition. + Qed. + + Global Instance In_compat : Proper (eq==>equivlistA eqk==>iff) In. + Proof. + intros x x' Hx l l' Hl. rewrite !In_alt. + setoid_rewrite Hl. setoid_rewrite Hx. intuition. + Qed. + + Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l. + Proof. intros l x y e EQ. rewrite <- EQ; auto. Qed. + + Lemma In_eq : forall l x y, eq x y -> In x l -> In y l. + Proof. intros l x y EQ. rewrite <- EQ; auto. Qed. + + Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l. + Proof. intros l x x' H. rewrite H; auto. Qed. + + Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l. + Proof. apply InfA_ltA; auto with *. Qed. + + Hint Immediate Inf_eq. + Hint Resolve Inf_lt. + + Lemma Sort_Inf_In : + forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p. + Proof. apply SortA_InfA_InA; auto with *. Qed. + + Lemma Sort_Inf_NotIn : + forall l k e, Sort l -> Inf (k,e) l -> ~In k l. + Proof. + intros; red; intros. + destruct H1 as [e' H2]. + elim (@ltk_not_eqk (k,e) (k,e')). + eapply Sort_Inf_In; eauto. + repeat red; reflexivity. + Qed. + + Lemma Sort_NoDupA: forall l, Sort l -> NoDupA eqk l. + Proof. apply SortA_NoDupA; auto with *. Qed. + + Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'. + Proof. + intros; invlist sort; eapply Sort_Inf_In; eauto. + Qed. + + Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) -> + ltk e e' \/ eqk e e'. + Proof. + intros; invlist InA; auto with relations. + left; apply Sort_In_cons_1 with l; auto with relations. + Qed. + + Lemma Sort_In_cons_3 : + forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k. + Proof. + intros; invlist sort; red; intros. + eapply Sort_Inf_NotIn; eauto using In_eq. + Qed. + + Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l. + Proof. + intros; invlist In; invlist MapsTo. compute in * |- ; intuition. + right; exists x; auto. + Qed. + + Lemma In_inv_2 : forall k k' e e' l, + InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l. + Proof. + intros; invlist InA; intuition. + Qed. + + Lemma In_inv_3 : forall x x' l, + InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l. + Proof. + intros; invlist InA; compute in * |- ; intuition. + Qed. + + End Elt. + + Hint Unfold eqk eqke ltk. + Hint Extern 2 (eqke ?a ?b) => split. + Hint Resolve ltk_not_eqk ltk_not_eqke. + Hint Resolve InA_eqke_eqk. + Hint Unfold MapsTo In. + Hint Immediate Inf_eq. + Hint Resolve Inf_lt. + Hint Resolve Sort_Inf_NotIn. + Hint Resolve In_inv_2 In_inv_3. + +End KeyOrderedType. + |