summaryrefslogtreecommitdiff
path: root/theories/Structures/OrdersLists.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Structures/OrdersLists.v')
-rw-r--r--theories/Structures/OrdersLists.v256
1 files changed, 256 insertions, 0 deletions
diff --git a/theories/Structures/OrdersLists.v b/theories/Structures/OrdersLists.v
new file mode 100644
index 00000000..2ed07026
--- /dev/null
+++ b/theories/Structures/OrdersLists.v
@@ -0,0 +1,256 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+Require Export RelationPairs SetoidList Orders.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Specialization of results about lists modulo. *)
+
+Module OrderedTypeLists (Import O:OrderedType).
+
+Section ForNotations.
+
+Notation In:=(InA eq).
+Notation Inf:=(lelistA lt).
+Notation Sort:=(sort lt).
+Notation NoDup:=(NoDupA eq).
+
+Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+Proof. intros. rewrite <- H; auto. Qed.
+
+Lemma ListIn_In : forall l x, List.In x l -> In x l.
+Proof. exact (In_InA eq_equiv). Qed.
+
+Lemma Inf_lt : forall l x y, lt x y -> Inf y l -> Inf x l.
+Proof. exact (InfA_ltA lt_strorder). Qed.
+
+Lemma Inf_eq : forall l x y, eq x y -> Inf y l -> Inf x l.
+Proof. exact (InfA_eqA eq_equiv lt_strorder lt_compat). Qed.
+
+Lemma Sort_Inf_In : forall l x a, Sort l -> Inf a l -> In x l -> lt a x.
+Proof. exact (SortA_InfA_InA eq_equiv lt_strorder lt_compat). Qed.
+
+Lemma ListIn_Inf : forall l x, (forall y, List.In y l -> lt x y) -> Inf x l.
+Proof. exact (@In_InfA t lt). Qed.
+
+Lemma In_Inf : forall l x, (forall y, In y l -> lt x y) -> Inf x l.
+Proof. exact (InA_InfA eq_equiv (ltA:=lt)). Qed.
+
+Lemma Inf_alt :
+ forall l x, Sort l -> (Inf x l <-> (forall y, In y l -> lt x y)).
+Proof. exact (InfA_alt eq_equiv lt_strorder lt_compat). Qed.
+
+Lemma Sort_NoDup : forall l, Sort l -> NoDup l.
+Proof. exact (SortA_NoDupA eq_equiv lt_strorder lt_compat) . Qed.
+
+End ForNotations.
+
+Hint Resolve ListIn_In Sort_NoDup Inf_lt.
+Hint Immediate In_eq Inf_lt.
+
+End OrderedTypeLists.
+
+
+
+
+
+(** * Results about keys and data as manipulated in FMaps. *)
+
+
+Module KeyOrderedType(Import O:OrderedType).
+ Module Import MO:=OrderedTypeLists(O).
+
+ Section Elt.
+ Variable elt : Type.
+ Notation key:=t.
+
+ Local Open Scope signature_scope.
+
+ Definition eqk : relation (key*elt) := eq @@1.
+ Definition eqke : relation (key*elt) := eq * Logic.eq.
+ Definition ltk : relation (key*elt) := lt @@1.
+
+ Hint Unfold eqk eqke ltk.
+
+ (* eqke is stricter than eqk *)
+
+ Global Instance eqke_eqk : subrelation eqke eqk.
+ Proof. firstorder. Qed.
+
+ (* eqk, eqke are equalities, ltk is a strict order *)
+
+ Global Instance eqk_equiv : Equivalence eqk.
+
+ Global Instance eqke_equiv : Equivalence eqke.
+
+ Global Instance ltk_strorder : StrictOrder ltk.
+
+ Global Instance ltk_compat : Proper (eqk==>eqk==>iff) ltk.
+ Proof. unfold eqk, ltk; auto with *. Qed.
+
+ (* Additionnal facts *)
+
+ Global Instance pair_compat : Proper (eq==>Logic.eq==>eqke) (@pair key elt).
+ Proof. apply pair_compat. Qed.
+
+ Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'.
+ Proof.
+ intros e e' LT EQ; rewrite EQ in LT.
+ elim (StrictOrder_Irreflexive _ LT).
+ Qed.
+
+ Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'.
+ Proof.
+ intros e e' LT EQ; rewrite EQ in LT.
+ elim (StrictOrder_Irreflexive _ LT).
+ Qed.
+
+ Lemma InA_eqke_eqk :
+ forall x m, InA eqke x m -> InA eqk x m.
+ Proof.
+ unfold eqke, RelProd; induction 1; firstorder.
+ Qed.
+ Hint Resolve InA_eqke_eqk.
+
+ Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
+ Definition In k m := exists e:elt, MapsTo k e m.
+ Notation Sort := (sort ltk).
+ Notation Inf := (lelistA ltk).
+
+ Hint Unfold MapsTo In.
+
+ (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)
+
+ Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
+ Proof.
+ firstorder.
+ exists x; auto.
+ induction H.
+ destruct y; compute in H.
+ exists e; left; auto.
+ destruct IHInA as [e H0].
+ exists e; auto.
+ Qed.
+
+ Lemma In_alt2 : forall k l, In k l <-> Exists (fun p => eq k (fst p)) l.
+ Proof.
+ unfold In, MapsTo.
+ setoid_rewrite Exists_exists; setoid_rewrite InA_alt.
+ firstorder.
+ exists (snd x), x; auto.
+ Qed.
+
+ Lemma In_nil : forall k, In k nil <-> False.
+ Proof.
+ intros; rewrite In_alt2; apply Exists_nil.
+ Qed.
+
+ Lemma In_cons : forall k p l,
+ In k (p::l) <-> eq k (fst p) \/ In k l.
+ Proof.
+ intros; rewrite !In_alt2, Exists_cons; intuition.
+ Qed.
+
+ Global Instance MapsTo_compat :
+ Proper (eq==>Logic.eq==>equivlistA eqke==>iff) MapsTo.
+ Proof.
+ intros x x' Hx e e' He l l' Hl. unfold MapsTo.
+ rewrite Hx, He, Hl; intuition.
+ Qed.
+
+ Global Instance In_compat : Proper (eq==>equivlistA eqk==>iff) In.
+ Proof.
+ intros x x' Hx l l' Hl. rewrite !In_alt.
+ setoid_rewrite Hl. setoid_rewrite Hx. intuition.
+ Qed.
+
+ Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
+ Proof. intros l x y e EQ. rewrite <- EQ; auto. Qed.
+
+ Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+ Proof. intros l x y EQ. rewrite <- EQ; auto. Qed.
+
+ Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l.
+ Proof. intros l x x' H. rewrite H; auto. Qed.
+
+ Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l.
+ Proof. apply InfA_ltA; auto with *. Qed.
+
+ Hint Immediate Inf_eq.
+ Hint Resolve Inf_lt.
+
+ Lemma Sort_Inf_In :
+ forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p.
+ Proof. apply SortA_InfA_InA; auto with *. Qed.
+
+ Lemma Sort_Inf_NotIn :
+ forall l k e, Sort l -> Inf (k,e) l -> ~In k l.
+ Proof.
+ intros; red; intros.
+ destruct H1 as [e' H2].
+ elim (@ltk_not_eqk (k,e) (k,e')).
+ eapply Sort_Inf_In; eauto.
+ repeat red; reflexivity.
+ Qed.
+
+ Lemma Sort_NoDupA: forall l, Sort l -> NoDupA eqk l.
+ Proof. apply SortA_NoDupA; auto with *. Qed.
+
+ Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'.
+ Proof.
+ intros; invlist sort; eapply Sort_Inf_In; eauto.
+ Qed.
+
+ Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) ->
+ ltk e e' \/ eqk e e'.
+ Proof.
+ intros; invlist InA; auto with relations.
+ left; apply Sort_In_cons_1 with l; auto with relations.
+ Qed.
+
+ Lemma Sort_In_cons_3 :
+ forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k.
+ Proof.
+ intros; invlist sort; red; intros.
+ eapply Sort_Inf_NotIn; eauto using In_eq.
+ Qed.
+
+ Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
+ Proof.
+ intros; invlist In; invlist MapsTo. compute in * |- ; intuition.
+ right; exists x; auto.
+ Qed.
+
+ Lemma In_inv_2 : forall k k' e e' l,
+ InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
+ Proof.
+ intros; invlist InA; intuition.
+ Qed.
+
+ Lemma In_inv_3 : forall x x' l,
+ InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
+ Proof.
+ intros; invlist InA; compute in * |- ; intuition.
+ Qed.
+
+ End Elt.
+
+ Hint Unfold eqk eqke ltk.
+ Hint Extern 2 (eqke ?a ?b) => split.
+ Hint Resolve ltk_not_eqk ltk_not_eqke.
+ Hint Resolve InA_eqke_eqk.
+ Hint Unfold MapsTo In.
+ Hint Immediate Inf_eq.
+ Hint Resolve Inf_lt.
+ Hint Resolve Sort_Inf_NotIn.
+ Hint Resolve In_inv_2 In_inv_3.
+
+End KeyOrderedType.
+