diff options
Diffstat (limited to 'theories/Structures/OrdersFacts.v')
-rw-r--r-- | theories/Structures/OrdersFacts.v | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/theories/Structures/OrdersFacts.v b/theories/Structures/OrdersFacts.v new file mode 100644 index 00000000..a28b7977 --- /dev/null +++ b/theories/Structures/OrdersFacts.v @@ -0,0 +1,234 @@ +(***********************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) +(* \VV/ *************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(***********************************************************************) + +Require Import Basics OrdersTac. +Require Export Orders. + +Set Implicit Arguments. +Unset Strict Implicit. + +(** * Properties of [OrderedTypeFull] *) + +Module OrderedTypeFullFacts (Import O:OrderedTypeFull'). + + Module OrderTac := OTF_to_OrderTac O. + Ltac order := OrderTac.order. + Ltac iorder := intuition order. + + Instance le_compat : Proper (eq==>eq==>iff) le. + Proof. repeat red; iorder. Qed. + + Instance le_preorder : PreOrder le. + Proof. split; red; order. Qed. + + Instance le_order : PartialOrder eq le. + Proof. compute; iorder. Qed. + + Instance le_antisym : Antisymmetric _ eq le. + Proof. apply partial_order_antisym; auto with *. Qed. + + Lemma le_not_gt_iff : forall x y, x<=y <-> ~y<x. + Proof. iorder. Qed. + + Lemma lt_not_ge_iff : forall x y, x<y <-> ~y<=x. + Proof. iorder. Qed. + + Lemma le_or_gt : forall x y, x<=y \/ y<x. + Proof. intros. rewrite le_lteq; destruct (O.compare_spec x y); auto. Qed. + + Lemma lt_or_ge : forall x y, x<y \/ y<=x. + Proof. intros. rewrite le_lteq; destruct (O.compare_spec x y); iorder. Qed. + + Lemma eq_is_le_ge : forall x y, x==y <-> x<=y /\ y<=x. + Proof. iorder. Qed. + +End OrderedTypeFullFacts. + + +(** * Properties of [OrderedType] *) + +Module OrderedTypeFacts (Import O: OrderedType'). + + Module OrderTac := OT_to_OrderTac O. + Ltac order := OrderTac.order. + + Notation "x <= y" := (~lt y x) : order. + Infix "?=" := compare (at level 70, no associativity) : order. + + Local Open Scope order. + + Tactic Notation "elim_compare" constr(x) constr(y) := + destruct (compare_spec x y). + + Tactic Notation "elim_compare" constr(x) constr(y) "as" ident(h) := + destruct (compare_spec x y) as [h|h|h]. + + (** The following lemmas are either re-phrasing of [eq_equiv] and + [lt_strorder] or immediately provable by [order]. Interest: + compatibility, test of order, etc *) + + Definition eq_refl (x:t) : x==x := Equivalence_Reflexive x. + + Definition eq_sym (x y:t) : x==y -> y==x := Equivalence_Symmetric x y. + + Definition eq_trans (x y z:t) : x==y -> y==z -> x==z := + Equivalence_Transitive x y z. + + Definition lt_trans (x y z:t) : x<y -> y<z -> x<z := + StrictOrder_Transitive x y z. + + Definition lt_irrefl (x:t) : ~x<x := StrictOrder_Irreflexive x. + + (** Some more about [compare] *) + + Lemma compare_eq_iff : forall x y, (x ?= y) = Eq <-> x==y. + Proof. + intros; elim_compare x y; intuition; try discriminate; order. + Qed. + + Lemma compare_lt_iff : forall x y, (x ?= y) = Lt <-> x<y. + Proof. + intros; elim_compare x y; intuition; try discriminate; order. + Qed. + + Lemma compare_gt_iff : forall x y, (x ?= y) = Gt <-> y<x. + Proof. + intros; elim_compare x y; intuition; try discriminate; order. + Qed. + + Lemma compare_ge_iff : forall x y, (x ?= y) <> Lt <-> y<=x. + Proof. + intros; rewrite compare_lt_iff; intuition. + Qed. + + Lemma compare_le_iff : forall x y, (x ?= y) <> Gt <-> x<=y. + Proof. + intros; rewrite compare_gt_iff; intuition. + Qed. + + Hint Rewrite compare_eq_iff compare_lt_iff compare_gt_iff : order. + + Instance compare_compat : Proper (eq==>eq==>Logic.eq) compare. + Proof. + intros x x' Hxx' y y' Hyy'. + elim_compare x' y'; autorewrite with order; order. + Qed. + + Lemma compare_refl : forall x, (x ?= x) = Eq. + Proof. + intros; elim_compare x x; auto; order. + Qed. + + Lemma compare_antisym : forall x y, (y ?= x) = CompOpp (x ?= y). + Proof. + intros; elim_compare x y; simpl; autorewrite with order; order. + Qed. + + (** For compatibility reasons *) + Definition eq_dec := eq_dec. + + Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}. + Proof. + intros x y; destruct (CompSpec2Type (compare_spec x y)); + [ right | left | right ]; order. + Defined. + + Definition eqb x y : bool := if eq_dec x y then true else false. + + Lemma if_eq_dec : forall x y (B:Type)(b b':B), + (if eq_dec x y then b else b') = + (match compare x y with Eq => b | _ => b' end). + Proof. + intros; destruct eq_dec; elim_compare x y; auto; order. + Qed. + + Lemma eqb_alt : + forall x y, eqb x y = match compare x y with Eq => true | _ => false end. + Proof. + unfold eqb; intros; apply if_eq_dec. + Qed. + + Instance eqb_compat : Proper (eq==>eq==>Logic.eq) eqb. + Proof. + intros x x' Hxx' y y' Hyy'. + rewrite 2 eqb_alt, Hxx', Hyy'; auto. + Qed. + +End OrderedTypeFacts. + + + + + + +(** * Tests of the order tactic + + Is it at least capable of proving some basic properties ? *) + +Module OrderedTypeTest (Import O:OrderedType'). + Module Import MO := OrderedTypeFacts O. + Local Open Scope order. + Lemma lt_not_eq x y : x<y -> ~x==y. Proof. order. Qed. + Lemma lt_eq x y z : x<y -> y==z -> x<z. Proof. order. Qed. + Lemma eq_lt x y z : x==y -> y<z -> x<z. Proof. order. Qed. + Lemma le_eq x y z : x<=y -> y==z -> x<=z. Proof. order. Qed. + Lemma eq_le x y z : x==y -> y<=z -> x<=z. Proof. order. Qed. + Lemma neq_eq x y z : ~x==y -> y==z -> ~x==z. Proof. order. Qed. + Lemma eq_neq x y z : x==y -> ~y==z -> ~x==z. Proof. order. Qed. + Lemma le_lt_trans x y z : x<=y -> y<z -> x<z. Proof. order. Qed. + Lemma lt_le_trans x y z : x<y -> y<=z -> x<z. Proof. order. Qed. + Lemma le_trans x y z : x<=y -> y<=z -> x<=z. Proof. order. Qed. + Lemma le_antisym x y : x<=y -> y<=x -> x==y. Proof. order. Qed. + Lemma le_neq x y : x<=y -> ~x==y -> x<y. Proof. order. Qed. + Lemma neq_sym x y : ~x==y -> ~y==x. Proof. order. Qed. + Lemma lt_le x y : x<y -> x<=y. Proof. order. Qed. + Lemma gt_not_eq x y : y<x -> ~x==y. Proof. order. Qed. + Lemma eq_not_lt x y : x==y -> ~x<y. Proof. order. Qed. + Lemma eq_not_gt x y : x==y -> ~ y<x. Proof. order. Qed. + Lemma lt_not_gt x y : x<y -> ~ y<x. Proof. order. Qed. + Lemma eq_is_nlt_ngt x y : x==y <-> ~x<y /\ ~y<x. + Proof. intuition; order. Qed. +End OrderedTypeTest. + + + +(** * Reversed OrderedTypeFull. + + we can switch the orientation of the order. This is used for + example when deriving properties of [min] out of the ones of [max] + (see [GenericMinMax]). +*) + +Module OrderedTypeRev (O:OrderedTypeFull) <: OrderedTypeFull. + +Definition t := O.t. +Definition eq := O.eq. +Instance eq_equiv : Equivalence eq. +Definition eq_dec := O.eq_dec. + +Definition lt := flip O.lt. +Definition le := flip O.le. + +Instance lt_strorder: StrictOrder lt. +Proof. unfold lt; auto with *. Qed. +Instance lt_compat : Proper (eq==>eq==>iff) lt. +Proof. unfold lt; auto with *. Qed. + +Lemma le_lteq : forall x y, le x y <-> lt x y \/ eq x y. +Proof. intros; unfold le, lt, flip. rewrite O.le_lteq; intuition. Qed. + +Definition compare := flip O.compare. + +Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y). +Proof. +intros; unfold compare, eq, lt, flip. +destruct (O.compare_spec y x); auto with relations. +Qed. + +End OrderedTypeRev. + |