diff options
Diffstat (limited to 'theories/Sorting/Heap.v')
-rw-r--r-- | theories/Sorting/Heap.v | 89 |
1 files changed, 71 insertions, 18 deletions
diff --git a/theories/Sorting/Heap.v b/theories/Sorting/Heap.v index fe7902aa..4124ef98 100644 --- a/theories/Sorting/Heap.v +++ b/theories/Sorting/Heap.v @@ -6,13 +6,17 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Heap.v 10698 2008-03-19 18:46:59Z letouzey $ i*) +(*i $Id$ i*) -(** A development of Treesort on Heap trees *) +(** This file is deprecated, for a tree on list, use [Mergesort.v]. *) + +(** A development of Treesort on Heap trees. It has an average + complexity of O(n.log n) but of O(n²) in the worst case (e.g. if + the list is already sorted) *) (* G. Huet 1-9-95 uses Multiset *) -Require Import List Multiset Permutation Relations Sorting. +Require Import List Multiset PermutSetoid Relations Sorting. Section defs. @@ -25,7 +29,7 @@ Section defs. Variable eqA : relation A. Let gtA (x y:A) := ~ leA x y. - + Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}. Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}. Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y. @@ -37,7 +41,7 @@ Section defs. Let emptyBag := EmptyBag A. Let singletonBag := SingletonBag _ eqA_dec. - + Inductive Tree := | Tree_Leaf : Tree | Tree_Node : A -> Tree -> Tree -> Tree. @@ -92,7 +96,7 @@ Section defs. forall T:Tree, is_heap T -> P T. Proof. simple induction T; auto with datatypes. - intros a G PG D PD PN. + intros a G PG D PD PN. elim (invert_heap a G D); auto with datatypes. intros H1 H2; elim H2; intros H3 H4; elim H4; intros. apply X0; auto with datatypes. @@ -109,7 +113,7 @@ Section defs. forall T:Tree, is_heap T -> P T. Proof. simple induction T; auto with datatypes. - intros a G PG D PD PN. + intros a G PG D PD PN. elim (invert_heap a G D); auto with datatypes. intros H1 H2; elim H2; intros H3 H4; elim H4; intros. apply X; auto with datatypes. @@ -122,6 +126,54 @@ Section defs. intros; simpl in |- *; apply leA_trans with b; auto with datatypes. Qed. + (** ** Merging two sorted lists *) + + Inductive merge_lem (l1 l2:list A) : Type := + merge_exist : + forall l:list A, + Sorted leA l -> + meq (list_contents _ eqA_dec l) + (munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2)) -> + (forall a, HdRel leA a l1 -> HdRel leA a l2 -> HdRel leA a l) -> + merge_lem l1 l2. + + Lemma merge : + forall l1:list A, Sorted leA l1 -> + forall l2:list A, Sorted leA l2 -> merge_lem l1 l2. + Proof. + simple induction 1; intros. + apply merge_exist with l2; auto with datatypes. + elim H2; intros. + apply merge_exist with (a :: l); simpl in |- *; auto using cons_sort with datatypes. + elim (leA_dec a a0); intros. + + (* 1 (leA a a0) *) + cut (merge_lem l (a0 :: l0)); auto using cons_sort with datatypes. + intros [l3 l3sorted l3contents Hrec]. + apply merge_exist with (a :: l3); simpl in |- *; + auto using cons_sort, cons_leA with datatypes. + apply meq_trans with + (munion (singletonBag a) + (munion (list_contents _ eqA_dec l) + (list_contents _ eqA_dec (a0 :: l0)))). + apply meq_right; trivial with datatypes. + apply meq_sym; apply munion_ass. + intros; apply cons_leA. + apply (@HdRel_inv _ leA) with l; trivial with datatypes. + + (* 2 (leA a0 a) *) + elim X0; simpl in |- *; intros. + apply merge_exist with (a0 :: l3); simpl in |- *; + auto using cons_sort, cons_leA with datatypes. + apply meq_trans with + (munion (singletonBag a0) + (munion (munion (singletonBag a) (list_contents _ eqA_dec l)) + (list_contents _ eqA_dec l0))). + apply meq_right; trivial with datatypes. + apply munion_perm_left. + intros; apply cons_leA; apply HdRel_inv with (l:=l0); trivial with datatypes. + Qed. + (** ** From trees to multisets *) @@ -167,15 +219,15 @@ Section defs. elim (X a0); intros. apply insert_exist with (Tree_Node a T2 T0); auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. - simpl in |- *; apply treesort_twist1; trivial with datatypes. + simpl in |- *; apply treesort_twist1; trivial with datatypes. elim (X a); intros T3 HeapT3 ConT3 LeA. - apply insert_exist with (Tree_Node a0 T2 T3); + apply insert_exist with (Tree_Node a0 T2 T3); auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. apply node_is_heap; auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. - apply low_trans with a; auto with datatypes. + apply low_trans with a; auto with datatypes. apply LeA; auto with datatypes. apply low_trans with a; auto with datatypes. - simpl in |- *; apply treesort_twist2; trivial with datatypes. + simpl in |- *; apply treesort_twist2; trivial with datatypes. Qed. @@ -186,7 +238,7 @@ Section defs. forall T:Tree, is_heap T -> meq (list_contents _ eqA_dec l) (contents T) -> build_heap l. - + Lemma list_to_heap : forall l:list A, build_heap l. Proof. simple induction l. @@ -204,12 +256,12 @@ Section defs. (** ** Building the sorted list *) - + Inductive flat_spec (T:Tree) : Type := flat_exist : forall l:list A, - sort leA l -> - (forall a:A, leA_Tree a T -> lelistA leA a l) -> + Sorted leA l -> + (forall a:A, leA_Tree a T -> HdRel leA a l) -> meq (contents T) (list_contents _ eqA_dec l) -> flat_spec T. Lemma heap_to_list : forall T:Tree, is_heap T -> flat_spec T. @@ -217,7 +269,7 @@ Section defs. intros T h; elim h; intros. apply flat_exist with (nil (A:=A)); auto with datatypes. elim X; intros l1 s1 i1 m1; elim X0; intros l2 s2 i2 m2. - elim (merge _ leA_dec eqA_dec s1 s2); intros. + elim (merge _ s1 _ s2); intros. apply flat_exist with (a :: l); simpl in |- *; auto with datatypes. apply meq_trans with (munion (list_contents _ eqA_dec l1) @@ -234,7 +286,8 @@ Section defs. (** * Specification of treesort *) Theorem treesort : - forall l:list A, {m : list A | sort leA m & permutation _ eqA_dec l m}. + forall l:list A, + {m : list A | Sorted leA m & permutation _ eqA_dec l m}. Proof. intro l; unfold permutation in |- *. elim (list_to_heap l). @@ -245,4 +298,4 @@ Section defs. apply meq_trans with (contents T); trivial with datatypes. Qed. -End defs.
\ No newline at end of file +End defs. |