diff options
Diffstat (limited to 'theories/Sets/Uniset.v')
-rw-r--r-- | theories/Sets/Uniset.v | 215 |
1 files changed, 215 insertions, 0 deletions
diff --git a/theories/Sets/Uniset.v b/theories/Sets/Uniset.v new file mode 100644 index 00000000..10d26f22 --- /dev/null +++ b/theories/Sets/Uniset.v @@ -0,0 +1,215 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Uniset.v,v 1.9.2.1 2004/07/16 19:31:18 herbelin Exp $ i*) + +(** Sets as characteristic functions *) + +(* G. Huet 1-9-95 *) +(* Updated Papageno 12/98 *) + +Require Import Bool. + +Set Implicit Arguments. + +Section defs. + +Variable A : Set. +Variable eqA : A -> A -> Prop. +Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}. + +Inductive uniset : Set := + Charac : (A -> bool) -> uniset. + +Definition charac (s:uniset) (a:A) : bool := let (f) := s in f a. + +Definition Emptyset := Charac (fun a:A => false). + +Definition Fullset := Charac (fun a:A => true). + +Definition Singleton (a:A) := + Charac + (fun a':A => + match eqA_dec a a' with + | left h => true + | right h => false + end). + +Definition In (s:uniset) (a:A) : Prop := charac s a = true. +Hint Unfold In. + +(** uniset inclusion *) +Definition incl (s1 s2:uniset) := forall a:A, leb (charac s1 a) (charac s2 a). +Hint Unfold incl. + +(** uniset equality *) +Definition seq (s1 s2:uniset) := forall a:A, charac s1 a = charac s2 a. +Hint Unfold seq. + +Lemma leb_refl : forall b:bool, leb b b. +Proof. +destruct b; simpl in |- *; auto. +Qed. +Hint Resolve leb_refl. + +Lemma incl_left : forall s1 s2:uniset, seq s1 s2 -> incl s1 s2. +Proof. +unfold incl in |- *; intros s1 s2 E a; elim (E a); auto. +Qed. + +Lemma incl_right : forall s1 s2:uniset, seq s1 s2 -> incl s2 s1. +Proof. +unfold incl in |- *; intros s1 s2 E a; elim (E a); auto. +Qed. + +Lemma seq_refl : forall x:uniset, seq x x. +Proof. +destruct x; unfold seq in |- *; auto. +Qed. +Hint Resolve seq_refl. + +Lemma seq_trans : forall x y z:uniset, seq x y -> seq y z -> seq x z. +Proof. +unfold seq in |- *. +destruct x; destruct y; destruct z; simpl in |- *; intros. +rewrite H; auto. +Qed. + +Lemma seq_sym : forall x y:uniset, seq x y -> seq y x. +Proof. +unfold seq in |- *. +destruct x; destruct y; simpl in |- *; auto. +Qed. + +(** uniset union *) +Definition union (m1 m2:uniset) := + Charac (fun a:A => orb (charac m1 a) (charac m2 a)). + +Lemma union_empty_left : forall x:uniset, seq x (union Emptyset x). +Proof. +unfold seq in |- *; unfold union in |- *; simpl in |- *; auto. +Qed. +Hint Resolve union_empty_left. + +Lemma union_empty_right : forall x:uniset, seq x (union x Emptyset). +Proof. +unfold seq in |- *; unfold union in |- *; simpl in |- *. +intros x a; rewrite (orb_b_false (charac x a)); auto. +Qed. +Hint Resolve union_empty_right. + +Lemma union_comm : forall x y:uniset, seq (union x y) (union y x). +Proof. +unfold seq in |- *; unfold charac in |- *; unfold union in |- *. +destruct x; destruct y; auto with bool. +Qed. +Hint Resolve union_comm. + +Lemma union_ass : + forall x y z:uniset, seq (union (union x y) z) (union x (union y z)). +Proof. +unfold seq in |- *; unfold union in |- *; unfold charac in |- *. +destruct x; destruct y; destruct z; auto with bool. +Qed. +Hint Resolve union_ass. + +Lemma seq_left : forall x y z:uniset, seq x y -> seq (union x z) (union y z). +Proof. +unfold seq in |- *; unfold union in |- *; unfold charac in |- *. +destruct x; destruct y; destruct z. +intros; elim H; auto. +Qed. +Hint Resolve seq_left. + +Lemma seq_right : forall x y z:uniset, seq x y -> seq (union z x) (union z y). +Proof. +unfold seq in |- *; unfold union in |- *; unfold charac in |- *. +destruct x; destruct y; destruct z. +intros; elim H; auto. +Qed. +Hint Resolve seq_right. + + +(** All the proofs that follow duplicate [Multiset_of_A] *) + +(** Here we should make uniset an abstract datatype, by hiding [Charac], + [union], [charac]; all further properties are proved abstractly *) + +Require Import Permut. + +Lemma union_rotate : + forall x y z:uniset, seq (union x (union y z)) (union z (union x y)). +Proof. +intros; apply (op_rotate uniset union seq); auto. +exact seq_trans. +Qed. + +Lemma seq_congr : + forall x y z t:uniset, seq x y -> seq z t -> seq (union x z) (union y t). +Proof. +intros; apply (cong_congr uniset union seq); auto. +exact seq_trans. +Qed. + +Lemma union_perm_left : + forall x y z:uniset, seq (union x (union y z)) (union y (union x z)). +Proof. +intros; apply (perm_left uniset union seq); auto. +exact seq_trans. +Qed. + +Lemma uniset_twist1 : + forall x y z t:uniset, + seq (union x (union (union y z) t)) (union (union y (union x t)) z). +Proof. +intros; apply (twist uniset union seq); auto. +exact seq_trans. +Qed. + +Lemma uniset_twist2 : + forall x y z t:uniset, + seq (union x (union (union y z) t)) (union (union y (union x z)) t). +Proof. +intros; apply seq_trans with (union (union x (union y z)) t). +apply seq_sym; apply union_ass. +apply seq_left; apply union_perm_left. +Qed. + +(** specific for treesort *) + +Lemma treesort_twist1 : + forall x y z t u:uniset, + seq u (union y z) -> + seq (union x (union u t)) (union (union y (union x t)) z). +Proof. +intros; apply seq_trans with (union x (union (union y z) t)). +apply seq_right; apply seq_left; trivial. +apply uniset_twist1. +Qed. + +Lemma treesort_twist2 : + forall x y z t u:uniset, + seq u (union y z) -> + seq (union x (union u t)) (union (union y (union x z)) t). +Proof. +intros; apply seq_trans with (union x (union (union y z) t)). +apply seq_right; apply seq_left; trivial. +apply uniset_twist2. +Qed. + + +(*i theory of minter to do similarly +Require Min. +(* uniset intersection *) +Definition minter := [m1,m2:uniset] + (Charac [a:A](andb (charac m1 a)(charac m2 a))). +i*) + +End defs. + +Unset Implicit Arguments.
\ No newline at end of file |