summaryrefslogtreecommitdiff
path: root/theories/Sets/Relations_3_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Relations_3_facts.v')
-rw-r--r--theories/Sets/Relations_3_facts.v32
1 files changed, 15 insertions, 17 deletions
diff --git a/theories/Sets/Relations_3_facts.v b/theories/Sets/Relations_3_facts.v
index 3a69a231..a63f7c80 100644
--- a/theories/Sets/Relations_3_facts.v
+++ b/theories/Sets/Relations_3_facts.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -24,8 +24,6 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Relations_3_facts.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export Relations_1.
Require Export Relations_1_facts.
Require Export Relations_2.
@@ -35,7 +33,7 @@ Require Export Relations_3.
Theorem Rstar_imp_coherent :
forall (U:Type) (R:Relation U) (x y:U), Rstar U R x y -> coherent U R x y.
Proof.
-intros U R x y H'; red in |- *.
+intros U R x y H'; red.
exists y; auto with sets.
Qed.
Hint Resolve Rstar_imp_coherent.
@@ -43,8 +41,8 @@ Hint Resolve Rstar_imp_coherent.
Theorem coherent_symmetric :
forall (U:Type) (R:Relation U), Symmetric U (coherent U R).
Proof.
-unfold coherent at 1 in |- *.
-intros U R; red in |- *.
+unfold coherent at 1.
+intros U R; red.
intros x y H'; elim H'.
intros z H'0; exists z; tauto.
Qed.
@@ -52,9 +50,9 @@ Qed.
Theorem Strong_confluence :
forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R.
Proof.
-intros U R H'; red in |- *.
-intro x; red in |- *; intros a b H'0.
-unfold coherent at 1 in |- *.
+intros U R H'; red.
+intro x; red; intros a b H'0.
+unfold coherent at 1.
generalize b; clear b.
elim H'0; clear H'0.
intros x0 b H'1; exists b; auto with sets.
@@ -77,9 +75,9 @@ Qed.
Theorem Strong_confluence_direct :
forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R.
Proof.
-intros U R H'; red in |- *.
-intro x; red in |- *; intros a b H'0.
-unfold coherent at 1 in |- *.
+intros U R H'; red.
+intro x; red; intros a b H'0.
+unfold coherent at 1.
generalize b; clear b.
elim H'0; clear H'0.
intros x0 b H'1; exists b; auto with sets.
@@ -113,7 +111,7 @@ Theorem Noetherian_contains_Noetherian :
forall (U:Type) (R R':Relation U),
Noetherian U R -> contains U R R' -> Noetherian U R'.
Proof.
-unfold Noetherian at 2 in |- *.
+unfold Noetherian at 2.
intros U R R' H' H'0 x.
elim (H' x); auto with sets.
Qed.
@@ -122,8 +120,8 @@ Theorem Newman :
forall (U:Type) (R:Relation U),
Noetherian U R -> Locally_confluent U R -> Confluent U R.
Proof.
-intros U R H' H'0; red in |- *; intro x.
-elim (H' x); unfold confluent in |- *.
+intros U R H' H'0; red; intro x.
+elim (H' x); unfold confluent.
intros x0 H'1 H'2 y z H'3 H'4.
generalize (Rstar_cases U R x0 y); intro h; lapply h;
[ intro h0; elim h0;
@@ -165,7 +163,7 @@ generalize (H'2 v); intro h; lapply h;
| clear h h0 ]
| clear h h0 ]
| clear h ]; auto with sets.
-red in |- *; (exists z1; split); auto with sets.
+red; (exists z1; split); auto with sets.
apply T with y1; auto with sets.
apply T with t; auto with sets.
-Qed. \ No newline at end of file
+Qed.