summaryrefslogtreecommitdiff
path: root/theories/Sets/Relations_2_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Relations_2_facts.v')
-rwxr-xr-xtheories/Sets/Relations_2_facts.v153
1 files changed, 153 insertions, 0 deletions
diff --git a/theories/Sets/Relations_2_facts.v b/theories/Sets/Relations_2_facts.v
new file mode 100755
index 00000000..4c729fe7
--- /dev/null
+++ b/theories/Sets/Relations_2_facts.v
@@ -0,0 +1,153 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(****************************************************************************)
+(* *)
+(* Naive Set Theory in Coq *)
+(* *)
+(* INRIA INRIA *)
+(* Rocquencourt Sophia-Antipolis *)
+(* *)
+(* Coq V6.1 *)
+(* *)
+(* Gilles Kahn *)
+(* Gerard Huet *)
+(* *)
+(* *)
+(* *)
+(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
+(* to the Newton Institute for providing an exceptional work environment *)
+(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
+(****************************************************************************)
+
+(*i $Id: Relations_2_facts.v,v 1.6.2.1 2004/07/16 19:31:18 herbelin Exp $ i*)
+
+Require Export Relations_1.
+Require Export Relations_1_facts.
+Require Export Relations_2.
+
+Theorem Rstar_reflexive :
+ forall (U:Type) (R:Relation U), Reflexive U (Rstar U R).
+Proof.
+auto with sets.
+Qed.
+
+Theorem Rplus_contains_R :
+ forall (U:Type) (R:Relation U), contains U (Rplus U R) R.
+Proof.
+auto with sets.
+Qed.
+
+Theorem Rstar_contains_R :
+ forall (U:Type) (R:Relation U), contains U (Rstar U R) R.
+Proof.
+intros U R; red in |- *; intros x y H'; apply Rstar_n with y; auto with sets.
+Qed.
+
+Theorem Rstar_contains_Rplus :
+ forall (U:Type) (R:Relation U), contains U (Rstar U R) (Rplus U R).
+Proof.
+intros U R; red in |- *.
+intros x y H'; elim H'.
+generalize Rstar_contains_R; intro T; red in T; auto with sets.
+intros x0 y0 z H'0 H'1 H'2; apply Rstar_n with y0; auto with sets.
+Qed.
+
+Theorem Rstar_transitive :
+ forall (U:Type) (R:Relation U), Transitive U (Rstar U R).
+Proof.
+intros U R; red in |- *.
+intros x y z H'; elim H'; auto with sets.
+intros x0 y0 z0 H'0 H'1 H'2 H'3; apply Rstar_n with y0; auto with sets.
+Qed.
+
+Theorem Rstar_cases :
+ forall (U:Type) (R:Relation U) (x y:U),
+ Rstar U R x y -> x = y \/ (exists u : _, R x u /\ Rstar U R u y).
+Proof.
+intros U R x y H'; elim H'; auto with sets.
+intros x0 y0 z H'0 H'1 H'2; right; exists y0; auto with sets.
+Qed.
+
+Theorem Rstar_equiv_Rstar1 :
+ forall (U:Type) (R:Relation U), same_relation U (Rstar U R) (Rstar1 U R).
+Proof.
+generalize Rstar_contains_R; intro T; red in T.
+intros U R; unfold same_relation, contains in |- *.
+split; intros x y H'; elim H'; auto with sets.
+generalize Rstar_transitive; intro T1; red in T1.
+intros x0 y0 z H'0 H'1 H'2 H'3; apply T1 with y0; auto with sets.
+intros x0 y0 z H'0 H'1 H'2; apply Rstar1_n with y0; auto with sets.
+Qed.
+
+Theorem Rsym_imp_Rstarsym :
+ forall (U:Type) (R:Relation U), Symmetric U R -> Symmetric U (Rstar U R).
+Proof.
+intros U R H'; red in |- *.
+intros x y H'0; elim H'0; auto with sets.
+intros x0 y0 z H'1 H'2 H'3.
+generalize Rstar_transitive; intro T1; red in T1.
+apply T1 with y0; auto with sets.
+apply Rstar_n with x0; auto with sets.
+Qed.
+
+Theorem Sstar_contains_Rstar :
+ forall (U:Type) (R S:Relation U),
+ contains U (Rstar U S) R -> contains U (Rstar U S) (Rstar U R).
+Proof.
+unfold contains in |- *.
+intros U R S H' x y H'0; elim H'0; auto with sets.
+generalize Rstar_transitive; intro T1; red in T1.
+intros x0 y0 z H'1 H'2 H'3; apply T1 with y0; auto with sets.
+Qed.
+
+Theorem star_monotone :
+ forall (U:Type) (R S:Relation U),
+ contains U S R -> contains U (Rstar U S) (Rstar U R).
+Proof.
+intros U R S H'.
+apply Sstar_contains_Rstar; auto with sets.
+generalize (Rstar_contains_R U S); auto with sets.
+Qed.
+
+Theorem RstarRplus_RRstar :
+ forall (U:Type) (R:Relation U) (x y z:U),
+ Rstar U R x y -> Rplus U R y z -> exists u : _, R x u /\ Rstar U R u z.
+Proof.
+generalize Rstar_contains_Rplus; intro T; red in T.
+generalize Rstar_transitive; intro T1; red in T1.
+intros U R x y z H'; elim H'.
+intros x0 H'0; elim H'0.
+intros x1 y0 H'1; exists y0; auto with sets.
+intros x1 y0 z0 H'1 H'2 H'3; exists y0; auto with sets.
+intros x0 y0 z0 H'0 H'1 H'2 H'3; exists y0.
+split; [ try assumption | idtac ].
+apply T1 with z0; auto with sets.
+Qed.
+
+Theorem Lemma1 :
+ forall (U:Type) (R:Relation U),
+ Strongly_confluent U R ->
+ forall x b:U,
+ Rstar U R x b ->
+ forall a:U, R x a -> exists z : _, Rstar U R a z /\ R b z.
+Proof.
+intros U R H' x b H'0; elim H'0.
+intros x0 a H'1; exists a; auto with sets.
+intros x0 y z H'1 H'2 H'3 a H'4.
+red in H'.
+specialize 3H' with (x := x0) (a := a) (b := y); intro H'7; lapply H'7;
+ [ intro H'8; lapply H'8;
+ [ intro H'9; try exact H'9; clear H'8 H'7 | clear H'8 H'7 ]
+ | clear H'7 ]; auto with sets.
+elim H'9.
+intros t H'5; elim H'5; intros H'6 H'7; try exact H'6; clear H'5.
+elim (H'3 t); auto with sets.
+intros z1 H'5; elim H'5; intros H'8 H'10; try exact H'8; clear H'5.
+exists z1; split; [ idtac | assumption ].
+apply Rstar_n with t; auto with sets.
+Qed. \ No newline at end of file