summaryrefslogtreecommitdiff
path: root/theories/Sets/Relations_1_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Relations_1_facts.v')
-rw-r--r--theories/Sets/Relations_1_facts.v24
1 files changed, 11 insertions, 13 deletions
diff --git a/theories/Sets/Relations_1_facts.v b/theories/Sets/Relations_1_facts.v
index f002e926..c4ede814 100644
--- a/theories/Sets/Relations_1_facts.v
+++ b/theories/Sets/Relations_1_facts.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -24,8 +24,6 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Relations_1_facts.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export Relations_1.
Definition Complement (U:Type) (R:Relation U) : Relation U :=
@@ -35,8 +33,8 @@ Theorem Rsym_imp_notRsym :
forall (U:Type) (R:Relation U),
Symmetric U R -> Symmetric U (Complement U R).
Proof.
-unfold Symmetric, Complement in |- *.
-intros U R H' x y H'0; red in |- *; intro H'1; apply H'0; auto with sets.
+unfold Symmetric, Complement.
+intros U R H' x y H'0; red; intro H'1; apply H'0; auto with sets.
Qed.
Theorem Equiv_from_preorder :
@@ -46,8 +44,8 @@ Proof.
intros U R H'; elim H'; intros H'0 H'1.
apply Definition_of_equivalence.
red in H'0; auto 10 with sets.
-2: red in |- *; intros x y h; elim h; intros H'3 H'4; auto 10 with sets.
-red in H'1; red in |- *; auto 10 with sets.
+2: red; intros x y h; elim h; intros H'3 H'4; auto 10 with sets.
+red in H'1; red; auto 10 with sets.
intros x y z h; elim h; intros H'3 H'4; clear h.
intro h; elim h; intros H'5 H'6; clear h.
split; apply H'1 with y; auto 10 with sets.
@@ -72,7 +70,7 @@ Hint Resolve contains_is_preorder.
Theorem same_relation_is_equivalence :
forall U:Type, Equivalence (Relation U) (same_relation U).
Proof.
-unfold same_relation at 1 in |- *; auto 10 with sets.
+unfold same_relation at 1; auto 10 with sets.
Qed.
Hint Resolve same_relation_is_equivalence.
@@ -80,14 +78,14 @@ Theorem cong_reflexive_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Reflexive U R -> Reflexive U R'.
Proof.
-unfold same_relation in |- *; intuition.
+unfold same_relation; intuition.
Qed.
Theorem cong_symmetric_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Symmetric U R -> Symmetric U R'.
Proof.
- compute in |- *; intros; elim H; intros; clear H;
+ compute; intros; elim H; intros; clear H;
apply (H3 y x (H0 x y (H2 x y H1))).
(*Intuition.*)
Qed.
@@ -96,7 +94,7 @@ Theorem cong_antisymmetric_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Antisymmetric U R -> Antisymmetric U R'.
Proof.
- compute in |- *; intros; elim H; intros; clear H;
+ compute; intros; elim H; intros; clear H;
apply (H0 x y (H3 x y H1) (H3 y x H2)).
(*Intuition.*)
Qed.
@@ -105,8 +103,8 @@ Theorem cong_transitive_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Transitive U R -> Transitive U R'.
Proof.
-intros U R R' H' H'0; red in |- *.
+intros U R R' H' H'0; red.
elim H'.
intros H'1 H'2 x y z H'3 H'4; apply H'2.
apply H'0 with y; auto with sets.
-Qed. \ No newline at end of file
+Qed.