summaryrefslogtreecommitdiff
path: root/theories/Sets/Powerset_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Powerset_facts.v')
-rwxr-xr-xtheories/Sets/Powerset_facts.v268
1 files changed, 268 insertions, 0 deletions
diff --git a/theories/Sets/Powerset_facts.v b/theories/Sets/Powerset_facts.v
new file mode 100755
index 00000000..2c71f529
--- /dev/null
+++ b/theories/Sets/Powerset_facts.v
@@ -0,0 +1,268 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(****************************************************************************)
+(* *)
+(* Naive Set Theory in Coq *)
+(* *)
+(* INRIA INRIA *)
+(* Rocquencourt Sophia-Antipolis *)
+(* *)
+(* Coq V6.1 *)
+(* *)
+(* Gilles Kahn *)
+(* Gerard Huet *)
+(* *)
+(* *)
+(* *)
+(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
+(* to the Newton Institute for providing an exceptional work environment *)
+(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
+(****************************************************************************)
+
+(*i $Id: Powerset_facts.v,v 1.8.2.1 2004/07/16 19:31:18 herbelin Exp $ i*)
+
+Require Export Ensembles.
+Require Export Constructive_sets.
+Require Export Relations_1.
+Require Export Relations_1_facts.
+Require Export Partial_Order.
+Require Export Cpo.
+Require Export Powerset.
+
+Section Sets_as_an_algebra.
+Variable U : Type.
+Hint Unfold not.
+
+Theorem Empty_set_zero : forall X:Ensemble U, Union U (Empty_set U) X = X.
+Proof.
+auto 6 with sets.
+Qed.
+Hint Resolve Empty_set_zero.
+
+Theorem Empty_set_zero' : forall x:U, Add U (Empty_set U) x = Singleton U x.
+Proof.
+unfold Add at 1 in |- *; auto with sets.
+Qed.
+Hint Resolve Empty_set_zero'.
+
+Lemma less_than_empty :
+ forall X:Ensemble U, Included U X (Empty_set U) -> X = Empty_set U.
+Proof.
+auto with sets.
+Qed.
+Hint Resolve less_than_empty.
+
+Theorem Union_commutative : forall A B:Ensemble U, Union U A B = Union U B A.
+Proof.
+auto with sets.
+Qed.
+
+Theorem Union_associative :
+ forall A B C:Ensemble U, Union U (Union U A B) C = Union U A (Union U B C).
+Proof.
+auto 9 with sets.
+Qed.
+Hint Resolve Union_associative.
+
+Theorem Union_idempotent : forall A:Ensemble U, Union U A A = A.
+Proof.
+auto 7 with sets.
+Qed.
+
+Lemma Union_absorbs :
+ forall A B:Ensemble U, Included U B A -> Union U A B = A.
+Proof.
+auto 7 with sets.
+Qed.
+
+Theorem Couple_as_union :
+ forall x y:U, Union U (Singleton U x) (Singleton U y) = Couple U x y.
+Proof.
+intros x y; apply Extensionality_Ensembles; split; red in |- *.
+intros x0 H'; elim H'; (intros x1 H'0; elim H'0; auto with sets).
+intros x0 H'; elim H'; auto with sets.
+Qed.
+
+Theorem Triple_as_union :
+ forall x y z:U,
+ Union U (Union U (Singleton U x) (Singleton U y)) (Singleton U z) =
+ Triple U x y z.
+Proof.
+intros x y z; apply Extensionality_Ensembles; split; red in |- *.
+intros x0 H'; elim H'.
+intros x1 H'0; elim H'0; (intros x2 H'1; elim H'1; auto with sets).
+intros x1 H'0; elim H'0; auto with sets.
+intros x0 H'; elim H'; auto with sets.
+Qed.
+
+Theorem Triple_as_Couple : forall x y:U, Couple U x y = Triple U x x y.
+Proof.
+intros x y.
+rewrite <- (Couple_as_union x y).
+rewrite <- (Union_idempotent (Singleton U x)).
+apply Triple_as_union.
+Qed.
+
+Theorem Triple_as_Couple_Singleton :
+ forall x y z:U, Triple U x y z = Union U (Couple U x y) (Singleton U z).
+Proof.
+intros x y z.
+rewrite <- (Triple_as_union x y z).
+rewrite <- (Couple_as_union x y); auto with sets.
+Qed.
+
+Theorem Intersection_commutative :
+ forall A B:Ensemble U, Intersection U A B = Intersection U B A.
+Proof.
+intros A B.
+apply Extensionality_Ensembles.
+split; red in |- *; intros x H'; elim H'; auto with sets.
+Qed.
+
+Theorem Distributivity :
+ forall A B C:Ensemble U,
+ Intersection U A (Union U B C) =
+ Union U (Intersection U A B) (Intersection U A C).
+Proof.
+intros A B C.
+apply Extensionality_Ensembles.
+split; red in |- *; intros x H'.
+elim H'.
+intros x0 H'0 H'1; generalize H'0.
+elim H'1; auto with sets.
+elim H'; intros x0 H'0; elim H'0; auto with sets.
+Qed.
+
+Theorem Distributivity' :
+ forall A B C:Ensemble U,
+ Union U A (Intersection U B C) =
+ Intersection U (Union U A B) (Union U A C).
+Proof.
+intros A B C.
+apply Extensionality_Ensembles.
+split; red in |- *; intros x H'.
+elim H'; auto with sets.
+intros x0 H'0; elim H'0; auto with sets.
+elim H'.
+intros x0 H'0; elim H'0; auto with sets.
+intros x1 H'1 H'2; try exact H'2.
+generalize H'1.
+elim H'2; auto with sets.
+Qed.
+
+Theorem Union_add :
+ forall (A B:Ensemble U) (x:U), Add U (Union U A B) x = Union U A (Add U B x).
+Proof.
+unfold Add in |- *; auto with sets.
+Qed.
+Hint Resolve Union_add.
+
+Theorem Non_disjoint_union :
+ forall (X:Ensemble U) (x:U), In U X x -> Add U X x = X.
+intros X x H'; unfold Add in |- *.
+apply Extensionality_Ensembles; red in |- *.
+split; red in |- *; auto with sets.
+intros x0 H'0; elim H'0; auto with sets.
+intros t H'1; elim H'1; auto with sets.
+Qed.
+
+Theorem Non_disjoint_union' :
+ forall (X:Ensemble U) (x:U), ~ In U X x -> Subtract U X x = X.
+Proof.
+intros X x H'; unfold Subtract in |- *.
+apply Extensionality_Ensembles.
+split; red in |- *; auto with sets.
+intros x0 H'0; elim H'0; auto with sets.
+intros x0 H'0; apply Setminus_intro; auto with sets.
+red in |- *; intro H'1; elim H'1.
+lapply (Singleton_inv U x x0); auto with sets.
+intro H'4; apply H'; rewrite H'4; auto with sets.
+Qed.
+
+Lemma singlx : forall x y:U, In U (Add U (Empty_set U) x) y -> x = y.
+Proof.
+intro x; rewrite (Empty_set_zero' x); auto with sets.
+Qed.
+Hint Resolve singlx.
+
+Lemma incl_add :
+ forall (A B:Ensemble U) (x:U),
+ Included U A B -> Included U (Add U A x) (Add U B x).
+Proof.
+intros A B x H'; red in |- *; auto with sets.
+intros x0 H'0.
+lapply (Add_inv U A x x0); auto with sets.
+intro H'1; elim H'1;
+ [ intro H'2; clear H'1 | intro H'2; rewrite <- H'2; clear H'1 ];
+ auto with sets.
+Qed.
+Hint Resolve incl_add.
+
+Lemma incl_add_x :
+ forall (A B:Ensemble U) (x:U),
+ ~ In U A x -> Included U (Add U A x) (Add U B x) -> Included U A B.
+Proof.
+unfold Included in |- *.
+intros A B x H' H'0 x0 H'1.
+lapply (H'0 x0); auto with sets.
+intro H'2; lapply (Add_inv U B x x0); auto with sets.
+intro H'3; elim H'3;
+ [ intro H'4; try exact H'4; clear H'3 | intro H'4; clear H'3 ].
+absurd (In U A x0); auto with sets.
+rewrite <- H'4; auto with sets.
+Qed.
+
+Lemma Add_commutative :
+ forall (A:Ensemble U) (x y:U), Add U (Add U A x) y = Add U (Add U A y) x.
+Proof.
+intros A x y.
+unfold Add in |- *.
+rewrite (Union_associative A (Singleton U x) (Singleton U y)).
+rewrite (Union_commutative (Singleton U x) (Singleton U y)).
+rewrite <- (Union_associative A (Singleton U y) (Singleton U x));
+ auto with sets.
+Qed.
+
+Lemma Add_commutative' :
+ forall (A:Ensemble U) (x y z:U),
+ Add U (Add U (Add U A x) y) z = Add U (Add U (Add U A z) x) y.
+Proof.
+intros A x y z.
+rewrite (Add_commutative (Add U A x) y z).
+rewrite (Add_commutative A x z); auto with sets.
+Qed.
+
+Lemma Add_distributes :
+ forall (A B:Ensemble U) (x y:U),
+ Included U B A -> Add U (Add U A x) y = Union U (Add U A x) (Add U B y).
+Proof.
+intros A B x y H'; try assumption.
+rewrite <- (Union_add (Add U A x) B y).
+unfold Add at 4 in |- *.
+rewrite (Union_commutative A (Singleton U x)).
+rewrite Union_associative.
+rewrite (Union_absorbs A B H').
+rewrite (Union_commutative (Singleton U x) A).
+auto with sets.
+Qed.
+
+Lemma setcover_intro :
+ forall (U:Type) (A x y:Ensemble U),
+ Strict_Included U x y ->
+ ~ (exists z : _, Strict_Included U x z /\ Strict_Included U z y) ->
+ covers (Ensemble U) (Power_set_PO U A) y x.
+Proof.
+intros; apply Definition_of_covers; auto with sets.
+Qed.
+Hint Resolve setcover_intro.
+
+End Sets_as_an_algebra.
+
+Hint Resolve Empty_set_zero Empty_set_zero' Union_associative Union_add
+ singlx incl_add: sets v62.
+