summaryrefslogtreecommitdiff
path: root/theories/Sets/Powerset_Classical_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Powerset_Classical_facts.v')
-rwxr-xr-xtheories/Sets/Powerset_Classical_facts.v342
1 files changed, 342 insertions, 0 deletions
diff --git a/theories/Sets/Powerset_Classical_facts.v b/theories/Sets/Powerset_Classical_facts.v
new file mode 100755
index 00000000..05c60def
--- /dev/null
+++ b/theories/Sets/Powerset_Classical_facts.v
@@ -0,0 +1,342 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(****************************************************************************)
+(* *)
+(* Naive Set Theory in Coq *)
+(* *)
+(* INRIA INRIA *)
+(* Rocquencourt Sophia-Antipolis *)
+(* *)
+(* Coq V6.1 *)
+(* *)
+(* Gilles Kahn *)
+(* Gerard Huet *)
+(* *)
+(* *)
+(* *)
+(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
+(* to the Newton Institute for providing an exceptional work environment *)
+(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
+(****************************************************************************)
+
+(*i $Id: Powerset_Classical_facts.v,v 1.5.2.1 2004/07/16 19:31:18 herbelin Exp $ i*)
+
+Require Export Ensembles.
+Require Export Constructive_sets.
+Require Export Relations_1.
+Require Export Relations_1_facts.
+Require Export Partial_Order.
+Require Export Cpo.
+Require Export Powerset.
+Require Export Powerset_facts.
+Require Export Classical_Type.
+Require Export Classical_sets.
+
+Section Sets_as_an_algebra.
+
+Variable U : Type.
+
+Lemma sincl_add_x :
+ forall (A B:Ensemble U) (x:U),
+ ~ In U A x ->
+ Strict_Included U (Add U A x) (Add U B x) -> Strict_Included U A B.
+Proof.
+intros A B x H' H'0; red in |- *.
+lapply (Strict_Included_inv U (Add U A x) (Add U B x)); auto with sets.
+clear H'0; intro H'0; split.
+apply incl_add_x with (x := x); tauto.
+elim H'0; intros H'1 H'2; elim H'2; clear H'0 H'2.
+intros x0 H'0.
+red in |- *; intro H'2.
+elim H'0; clear H'0.
+rewrite <- H'2; auto with sets.
+Qed.
+
+Lemma incl_soustr_in :
+ forall (X:Ensemble U) (x:U), In U X x -> Included U (Subtract U X x) X.
+Proof.
+intros X x H'; red in |- *.
+intros x0 H'0; elim H'0; auto with sets.
+Qed.
+Hint Resolve incl_soustr_in: sets v62.
+
+Lemma incl_soustr :
+ forall (X Y:Ensemble U) (x:U),
+ Included U X Y -> Included U (Subtract U X x) (Subtract U Y x).
+Proof.
+intros X Y x H'; red in |- *.
+intros x0 H'0; elim H'0.
+intros H'1 H'2.
+apply Subtract_intro; auto with sets.
+Qed.
+Hint Resolve incl_soustr: sets v62.
+
+
+Lemma incl_soustr_add_l :
+ forall (X:Ensemble U) (x:U), Included U (Subtract U (Add U X x) x) X.
+Proof.
+intros X x; red in |- *.
+intros x0 H'; elim H'; auto with sets.
+intro H'0; elim H'0; auto with sets.
+intros t H'1 H'2; elim H'2; auto with sets.
+Qed.
+Hint Resolve incl_soustr_add_l: sets v62.
+
+Lemma incl_soustr_add_r :
+ forall (X:Ensemble U) (x:U),
+ ~ In U X x -> Included U X (Subtract U (Add U X x) x).
+Proof.
+intros X x H'; red in |- *.
+intros x0 H'0; try assumption.
+apply Subtract_intro; auto with sets.
+red in |- *; intro H'1; apply H'; rewrite H'1; auto with sets.
+Qed.
+Hint Resolve incl_soustr_add_r: sets v62.
+
+Lemma add_soustr_2 :
+ forall (X:Ensemble U) (x:U),
+ In U X x -> Included U X (Add U (Subtract U X x) x).
+Proof.
+intros X x H'; red in |- *.
+intros x0 H'0; try assumption.
+elim (classic (x = x0)); intro K; auto with sets.
+elim K; auto with sets.
+Qed.
+
+Lemma add_soustr_1 :
+ forall (X:Ensemble U) (x:U),
+ In U X x -> Included U (Add U (Subtract U X x) x) X.
+Proof.
+intros X x H'; red in |- *.
+intros x0 H'0; elim H'0; auto with sets.
+intros y H'1; elim H'1; auto with sets.
+intros t H'1; try assumption.
+rewrite <- (Singleton_inv U x t); auto with sets.
+Qed.
+Hint Resolve add_soustr_1 add_soustr_2: sets v62.
+
+Lemma add_soustr_xy :
+ forall (X:Ensemble U) (x y:U),
+ x <> y -> Subtract U (Add U X x) y = Add U (Subtract U X y) x.
+Proof.
+intros X x y H'; apply Extensionality_Ensembles.
+split; red in |- *.
+intros x0 H'0; elim H'0; auto with sets.
+intro H'1; elim H'1.
+intros u H'2 H'3; try assumption.
+apply Add_intro1.
+apply Subtract_intro; auto with sets.
+intros t H'2 H'3; try assumption.
+elim (Singleton_inv U x t); auto with sets.
+intros u H'2; try assumption.
+elim (Add_inv U (Subtract U X y) x u); auto with sets.
+intro H'0; elim H'0; auto with sets.
+intro H'0; rewrite <- H'0; auto with sets.
+Qed.
+Hint Resolve add_soustr_xy: sets v62.
+
+Lemma incl_st_add_soustr :
+ forall (X Y:Ensemble U) (x:U),
+ ~ In U X x ->
+ Strict_Included U (Add U X x) Y -> Strict_Included U X (Subtract U Y x).
+Proof.
+intros X Y x H' H'0; apply sincl_add_x with (x := x); auto with sets.
+split.
+elim H'0.
+intros H'1 H'2.
+generalize (Inclusion_is_transitive U).
+intro H'4; red in H'4.
+apply H'4 with (y := Y); auto with sets.
+red in H'0.
+elim H'0; intros H'1 H'2; try exact H'1; clear H'0. (* PB *)
+red in |- *; intro H'0; apply H'2.
+rewrite H'0; auto 8 with sets.
+Qed.
+
+Lemma Sub_Add_new :
+ forall (X:Ensemble U) (x:U), ~ In U X x -> X = Subtract U (Add U X x) x.
+Proof.
+auto with sets.
+Qed.
+
+Lemma Simplify_add :
+ forall (X X0:Ensemble U) (x:U),
+ ~ In U X x -> ~ In U X0 x -> Add U X x = Add U X0 x -> X = X0.
+Proof.
+intros X X0 x H' H'0 H'1; try assumption.
+rewrite (Sub_Add_new X x); auto with sets.
+rewrite (Sub_Add_new X0 x); auto with sets.
+rewrite H'1; auto with sets.
+Qed.
+
+Lemma Included_Add :
+ forall (X A:Ensemble U) (x:U),
+ Included U X (Add U A x) ->
+ Included U X A \/ (exists A' : _, X = Add U A' x /\ Included U A' A).
+Proof.
+intros X A x H'0; try assumption.
+elim (classic (In U X x)).
+intro H'1; right; try assumption.
+exists (Subtract U X x).
+split; auto with sets.
+red in H'0.
+red in |- *.
+intros x0 H'2; try assumption.
+lapply (Subtract_inv U X x x0); auto with sets.
+intro H'3; elim H'3; intros K K'; clear H'3.
+lapply (H'0 x0); auto with sets.
+intro H'3; try assumption.
+lapply (Add_inv U A x x0); auto with sets.
+intro H'4; elim H'4;
+ [ intro H'5; try exact H'5; clear H'4 | intro H'5; clear H'4 ].
+elim K'; auto with sets.
+intro H'1; left; try assumption.
+red in H'0.
+red in |- *.
+intros x0 H'2; try assumption.
+lapply (H'0 x0); auto with sets.
+intro H'3; try assumption.
+lapply (Add_inv U A x x0); auto with sets.
+intro H'4; elim H'4;
+ [ intro H'5; try exact H'5; clear H'4 | intro H'5; clear H'4 ].
+absurd (In U X x0); auto with sets.
+rewrite <- H'5; auto with sets.
+Qed.
+
+Lemma setcover_inv :
+ forall A x y:Ensemble U,
+ covers (Ensemble U) (Power_set_PO U A) y x ->
+ Strict_Included U x y /\
+ (forall z:Ensemble U, Included U x z -> Included U z y -> x = z \/ z = y).
+Proof.
+intros A x y H'; elim H'.
+unfold Strict_Rel_of in |- *; simpl in |- *.
+intros H'0 H'1; split; [ auto with sets | idtac ].
+intros z H'2 H'3; try assumption.
+elim (classic (x = z)); auto with sets.
+intro H'4; right; try assumption.
+elim (classic (z = y)); auto with sets.
+intro H'5; try assumption.
+elim H'1.
+exists z; auto with sets.
+Qed.
+
+Theorem Add_covers :
+ forall A a:Ensemble U,
+ Included U a A ->
+ forall x:U,
+ In U A x ->
+ ~ In U a x -> covers (Ensemble U) (Power_set_PO U A) (Add U a x) a.
+Proof.
+intros A a H' x H'0 H'1; try assumption.
+apply setcover_intro; auto with sets.
+red in |- *.
+split; [ idtac | red in |- *; intro H'2; try exact H'2 ]; auto with sets.
+apply H'1.
+rewrite H'2; auto with sets.
+red in |- *; intro H'2; elim H'2; clear H'2.
+intros z H'2; elim H'2; intros H'3 H'4; try exact H'3; clear H'2.
+lapply (Strict_Included_inv U a z); auto with sets; clear H'3.
+intro H'2; elim H'2; intros H'3 H'5; elim H'5; clear H'2 H'5.
+intros x0 H'2; elim H'2.
+intros H'5 H'6; try assumption.
+generalize H'4; intro K.
+red in H'4.
+elim H'4; intros H'8 H'9; red in H'8; clear H'4.
+lapply (H'8 x0); auto with sets.
+intro H'7; try assumption.
+elim (Add_inv U a x x0); auto with sets.
+intro H'15.
+cut (Included U (Add U a x) z).
+intro H'10; try assumption.
+red in K.
+elim K; intros H'11 H'12; apply H'12; clear K; auto with sets.
+rewrite H'15.
+red in |- *.
+intros x1 H'10; elim H'10; auto with sets.
+intros x2 H'11; elim H'11; auto with sets.
+Qed.
+
+Theorem covers_Add :
+ forall A a a':Ensemble U,
+ Included U a A ->
+ Included U a' A ->
+ covers (Ensemble U) (Power_set_PO U A) a' a ->
+ exists x : _, a' = Add U a x /\ In U A x /\ ~ In U a x.
+Proof.
+intros A a a' H' H'0 H'1; try assumption.
+elim (setcover_inv A a a'); auto with sets.
+intros H'6 H'7.
+clear H'1.
+elim (Strict_Included_inv U a a'); auto with sets.
+intros H'5 H'8; elim H'8.
+intros x H'1; elim H'1.
+intros H'2 H'3; try assumption.
+exists x.
+split; [ try assumption | idtac ].
+clear H'8 H'1.
+elim (H'7 (Add U a x)); auto with sets.
+intro H'1.
+absurd (a = Add U a x); auto with sets.
+red in |- *; intro H'8; try exact H'8.
+apply H'3.
+rewrite H'8; auto with sets.
+auto with sets.
+red in |- *.
+intros x0 H'1; elim H'1; auto with sets.
+intros x1 H'8; elim H'8; auto with sets.
+split; [ idtac | try assumption ].
+red in H'0; auto with sets.
+Qed.
+
+Theorem covers_is_Add :
+ forall A a a':Ensemble U,
+ Included U a A ->
+ Included U a' A ->
+ (covers (Ensemble U) (Power_set_PO U A) a' a <->
+ (exists x : _, a' = Add U a x /\ In U A x /\ ~ In U a x)).
+Proof.
+intros A a a' H' H'0; split; intro K.
+apply covers_Add with (A := A); auto with sets.
+elim K.
+intros x H'1; elim H'1; intros H'2 H'3; rewrite H'2; clear H'1.
+apply Add_covers; intuition.
+Qed.
+
+Theorem Singleton_atomic :
+ forall (x:U) (A:Ensemble U),
+ In U A x ->
+ covers (Ensemble U) (Power_set_PO U A) (Singleton U x) (Empty_set U).
+intros x A H'.
+rewrite <- (Empty_set_zero' U x).
+apply Add_covers; auto with sets.
+Qed.
+
+Lemma less_than_singleton :
+ forall (X:Ensemble U) (x:U),
+ Strict_Included U X (Singleton U x) -> X = Empty_set U.
+intros X x H'; try assumption.
+red in H'.
+lapply (Singleton_atomic x (Full_set U));
+ [ intro H'2; try exact H'2 | apply Full_intro ].
+elim H'; intros H'0 H'1; try exact H'1; clear H'.
+elim (setcover_inv (Full_set U) (Empty_set U) (Singleton U x));
+ [ intros H'6 H'7; try exact H'7 | idtac ]; auto with sets.
+elim (H'7 X); [ intro H'5; try exact H'5 | intro H'5 | idtac | idtac ];
+ auto with sets.
+elim H'1; auto with sets.
+Qed.
+
+End Sets_as_an_algebra.
+
+Hint Resolve incl_soustr_in: sets v62.
+Hint Resolve incl_soustr: sets v62.
+Hint Resolve incl_soustr_add_l: sets v62.
+Hint Resolve incl_soustr_add_r: sets v62.
+Hint Resolve add_soustr_1 add_soustr_2: sets v62.
+Hint Resolve add_soustr_xy: sets v62. \ No newline at end of file