diff options
Diffstat (limited to 'theories/Sets/Permut.v')
-rwxr-xr-x | theories/Sets/Permut.v | 91 |
1 files changed, 91 insertions, 0 deletions
diff --git a/theories/Sets/Permut.v b/theories/Sets/Permut.v new file mode 100755 index 00000000..af6151bf --- /dev/null +++ b/theories/Sets/Permut.v @@ -0,0 +1,91 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Permut.v,v 1.6.2.1 2004/07/16 19:31:18 herbelin Exp $ i*) + +(* G. Huet 1-9-95 *) + +(** We consider a Set [U], given with a commutative-associative operator [op], + and a congruence [cong]; we show permutation lemmas *) + +Section Axiomatisation. + +Variable U : Set. + +Variable op : U -> U -> U. + +Variable cong : U -> U -> Prop. + +Hypothesis op_comm : forall x y:U, cong (op x y) (op y x). +Hypothesis op_ass : forall x y z:U, cong (op (op x y) z) (op x (op y z)). + +Hypothesis cong_left : forall x y z:U, cong x y -> cong (op x z) (op y z). +Hypothesis cong_right : forall x y z:U, cong x y -> cong (op z x) (op z y). +Hypothesis cong_trans : forall x y z:U, cong x y -> cong y z -> cong x z. +Hypothesis cong_sym : forall x y:U, cong x y -> cong y x. + +(** Remark. we do not need: [Hypothesis cong_refl : (x:U)(cong x x)]. *) + +Lemma cong_congr : + forall x y z t:U, cong x y -> cong z t -> cong (op x z) (op y t). +Proof. +intros; apply cong_trans with (op y z). +apply cong_left; trivial. +apply cong_right; trivial. +Qed. + +Lemma comm_right : forall x y z:U, cong (op x (op y z)) (op x (op z y)). +Proof. +intros; apply cong_right; apply op_comm. +Qed. + +Lemma comm_left : forall x y z:U, cong (op (op x y) z) (op (op y x) z). +Proof. +intros; apply cong_left; apply op_comm. +Qed. + +Lemma perm_right : forall x y z:U, cong (op (op x y) z) (op (op x z) y). +Proof. +intros. +apply cong_trans with (op x (op y z)). +apply op_ass. +apply cong_trans with (op x (op z y)). +apply cong_right; apply op_comm. +apply cong_sym; apply op_ass. +Qed. + +Lemma perm_left : forall x y z:U, cong (op x (op y z)) (op y (op x z)). +Proof. +intros. +apply cong_trans with (op (op x y) z). +apply cong_sym; apply op_ass. +apply cong_trans with (op (op y x) z). +apply cong_left; apply op_comm. +apply op_ass. +Qed. + +Lemma op_rotate : forall x y z t:U, cong (op x (op y z)) (op z (op x y)). +Proof. +intros; apply cong_trans with (op (op x y) z). +apply cong_sym; apply op_ass. +apply op_comm. +Qed. + +(* Needed for treesort ... *) +Lemma twist : + forall x y z t:U, cong (op x (op (op y z) t)) (op (op y (op x t)) z). +Proof. +intros. +apply cong_trans with (op x (op (op y t) z)). +apply cong_right; apply perm_right. +apply cong_trans with (op (op x (op y t)) z). +apply cong_sym; apply op_ass. +apply cong_left; apply perm_left. +Qed. + +End Axiomatisation.
\ No newline at end of file |