summaryrefslogtreecommitdiff
path: root/theories/Sets/Integers.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Integers.v')
-rw-r--r--theories/Sets/Integers.v26
1 files changed, 12 insertions, 14 deletions
diff --git a/theories/Sets/Integers.v b/theories/Sets/Integers.v
index 5d073a0c..4ee7496e 100644
--- a/theories/Sets/Integers.v
+++ b/theories/Sets/Integers.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -24,8 +24,6 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Integers.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export Finite_sets.
Require Export Constructive_sets.
Require Export Classical_Type.
@@ -51,17 +49,17 @@ Section Integers_sect.
Lemma le_reflexive : Reflexive nat le.
Proof.
- red in |- *; auto with arith.
+ red; auto with arith.
Qed.
Lemma le_antisym : Antisymmetric nat le.
Proof.
- red in |- *; intros x y H H'; rewrite (le_antisym x y); auto.
+ red; intros x y H H'; rewrite (le_antisym x y); auto.
Qed.
Lemma le_trans : Transitive nat le.
Proof.
- red in |- *; intros; apply le_trans with y; auto.
+ red; intros; apply le_trans with y; auto.
Qed.
Lemma le_Order : Order nat le.
@@ -85,7 +83,7 @@ Section Integers_sect.
Lemma le_total_order : Totally_ordered nat nat_po Integers.
Proof.
apply Totally_ordered_definition.
- simpl in |- *.
+ simpl.
intros H' x y H'0.
elim le_or_lt with (n := x) (m := y).
intro H'1; left; auto with sets arith.
@@ -105,7 +103,7 @@ Section Integers_sect.
intros A H'0 H'1 x H'2; try assumption.
elim H'1; intros x0 H'3; clear H'1.
elim le_total_order.
- simpl in |- *.
+ simpl.
intro H'1; try assumption.
lapply H'1; [ intro H'4; idtac | try assumption ]; auto with sets arith.
generalize (H'4 x0 x).
@@ -116,28 +114,28 @@ Section Integers_sect.
[ intro H'5; try exact H'5; clear H'4 H'1 | intro H'5; clear H'4 H'1 ]
| clear H'1 ].
exists x.
- apply Upper_Bound_definition. simpl in |- *. apply triv_nat.
+ apply Upper_Bound_definition. simpl. apply triv_nat.
intros y H'1; elim H'1.
generalize le_trans.
intro H'4; red in H'4.
intros x1 H'6; try assumption.
- apply H'4 with (y := x0). elim H'3; simpl in |- *; auto with sets arith. trivial.
+ apply H'4 with (y := x0). elim H'3; simpl; auto with sets arith. trivial.
intros x1 H'4; elim H'4. unfold nat_po; simpl; trivial.
exists x0.
apply Upper_Bound_definition.
unfold nat_po. simpl. apply triv_nat.
intros y H'1; elim H'1.
intros x1 H'4; try assumption.
- elim H'3; simpl in |- *; auto with sets arith.
+ elim H'3; simpl; auto with sets arith.
intros x1 H'4; elim H'4; auto with sets arith.
- red in |- *.
+ red.
intros x1 H'1; elim H'1; apply triv_nat.
Qed.
Lemma Integers_has_no_ub :
~ (exists m : nat, Upper_Bound nat nat_po Integers m).
Proof.
- red in |- *; intro H'; elim H'.
+ red; intro H'; elim H'.
intros x H'0.
elim H'0; intros H'1 H'2.
cut (In nat Integers (S x)).
@@ -152,7 +150,7 @@ Section Integers_sect.
Lemma Integers_infinite : ~ Finite nat Integers.
Proof.
generalize Integers_has_no_ub.
- intro H'; red in |- *; intro H'0; try exact H'0.
+ intro H'; red; intro H'0; try exact H'0.
apply H'.
apply Finite_subset_has_lub; auto with sets arith.
Qed.