diff options
Diffstat (limited to 'theories/Sets/Integers.v')
-rw-r--r-- | theories/Sets/Integers.v | 26 |
1 files changed, 12 insertions, 14 deletions
diff --git a/theories/Sets/Integers.v b/theories/Sets/Integers.v index 5d073a0c..4ee7496e 100644 --- a/theories/Sets/Integers.v +++ b/theories/Sets/Integers.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -24,8 +24,6 @@ (* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) (****************************************************************************) -(*i $Id: Integers.v 14641 2011-11-06 11:59:10Z herbelin $ i*) - Require Export Finite_sets. Require Export Constructive_sets. Require Export Classical_Type. @@ -51,17 +49,17 @@ Section Integers_sect. Lemma le_reflexive : Reflexive nat le. Proof. - red in |- *; auto with arith. + red; auto with arith. Qed. Lemma le_antisym : Antisymmetric nat le. Proof. - red in |- *; intros x y H H'; rewrite (le_antisym x y); auto. + red; intros x y H H'; rewrite (le_antisym x y); auto. Qed. Lemma le_trans : Transitive nat le. Proof. - red in |- *; intros; apply le_trans with y; auto. + red; intros; apply le_trans with y; auto. Qed. Lemma le_Order : Order nat le. @@ -85,7 +83,7 @@ Section Integers_sect. Lemma le_total_order : Totally_ordered nat nat_po Integers. Proof. apply Totally_ordered_definition. - simpl in |- *. + simpl. intros H' x y H'0. elim le_or_lt with (n := x) (m := y). intro H'1; left; auto with sets arith. @@ -105,7 +103,7 @@ Section Integers_sect. intros A H'0 H'1 x H'2; try assumption. elim H'1; intros x0 H'3; clear H'1. elim le_total_order. - simpl in |- *. + simpl. intro H'1; try assumption. lapply H'1; [ intro H'4; idtac | try assumption ]; auto with sets arith. generalize (H'4 x0 x). @@ -116,28 +114,28 @@ Section Integers_sect. [ intro H'5; try exact H'5; clear H'4 H'1 | intro H'5; clear H'4 H'1 ] | clear H'1 ]. exists x. - apply Upper_Bound_definition. simpl in |- *. apply triv_nat. + apply Upper_Bound_definition. simpl. apply triv_nat. intros y H'1; elim H'1. generalize le_trans. intro H'4; red in H'4. intros x1 H'6; try assumption. - apply H'4 with (y := x0). elim H'3; simpl in |- *; auto with sets arith. trivial. + apply H'4 with (y := x0). elim H'3; simpl; auto with sets arith. trivial. intros x1 H'4; elim H'4. unfold nat_po; simpl; trivial. exists x0. apply Upper_Bound_definition. unfold nat_po. simpl. apply triv_nat. intros y H'1; elim H'1. intros x1 H'4; try assumption. - elim H'3; simpl in |- *; auto with sets arith. + elim H'3; simpl; auto with sets arith. intros x1 H'4; elim H'4; auto with sets arith. - red in |- *. + red. intros x1 H'1; elim H'1; apply triv_nat. Qed. Lemma Integers_has_no_ub : ~ (exists m : nat, Upper_Bound nat nat_po Integers m). Proof. - red in |- *; intro H'; elim H'. + red; intro H'; elim H'. intros x H'0. elim H'0; intros H'1 H'2. cut (In nat Integers (S x)). @@ -152,7 +150,7 @@ Section Integers_sect. Lemma Integers_infinite : ~ Finite nat Integers. Proof. generalize Integers_has_no_ub. - intro H'; red in |- *; intro H'0; try exact H'0. + intro H'; red; intro H'0; try exact H'0. apply H'. apply Finite_subset_has_lub; auto with sets arith. Qed. |