summaryrefslogtreecommitdiff
path: root/theories/Sets/Infinite_sets.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Infinite_sets.v')
-rw-r--r--theories/Sets/Infinite_sets.v16
1 files changed, 7 insertions, 9 deletions
diff --git a/theories/Sets/Infinite_sets.v b/theories/Sets/Infinite_sets.v
index afb9e0e1..897046ab 100644
--- a/theories/Sets/Infinite_sets.v
+++ b/theories/Sets/Infinite_sets.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -24,8 +24,6 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Infinite_sets.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export Finite_sets.
Require Export Constructive_sets.
Require Export Classical_Type.
@@ -58,7 +56,7 @@ Section Infinite_sets.
intros A X H' H'0.
elim H'0; intros H'1 H'2.
apply Strict_super_set_contains_new_element; auto with sets.
- red in |- *; intro H'3; apply H'.
+ red; intro H'3; apply H'.
rewrite <- H'3; auto with sets.
Qed.
@@ -78,7 +76,7 @@ Section Infinite_sets.
split.
apply card_add; auto with sets.
cut (In U A x).
- intro H'4; red in |- *; auto with sets.
+ intro H'4; red; auto with sets.
intros x0 H'5; elim H'5; auto with sets.
intros x1 H'6; elim H'6; auto with sets.
elim H'3; auto with sets.
@@ -93,7 +91,7 @@ Section Infinite_sets.
split.
apply card_add; auto with sets.
elim H'2; auto with sets.
- red in |- *.
+ red.
intros x2 H'9; elim H'9; auto with sets.
intros x3 H'10; elim H'10; auto with sets.
elim H'2; auto with sets.
@@ -169,11 +167,11 @@ Section Infinite_sets.
apply ex_intro with (x := Add U x0 x1).
split; [ split; [ try assumption | idtac ] | idtac ].
apply card_add; auto with sets.
- red in |- *; intro H'9; try exact H'9.
+ red; intro H'9; try exact H'9.
apply H'1.
elim H'4; intros H'10 H'11; rewrite <- H'11; clear H'4; auto with sets.
elim H'4; intros H'9 H'10; try exact H'9; clear H'4; auto with sets.
- red in |- *; auto with sets.
+ red; auto with sets.
intros x2 H'4; elim H'4; auto with sets.
intros x3 H'11; elim H'11; auto with sets.
elim H'4; intros H'9 H'10; rewrite <- H'10; clear H'4; auto with sets.
@@ -237,7 +235,7 @@ Section Infinite_sets.
Proof.
intros A f H' H'0 H'1.
apply NNPP.
- red in |- *; intro H'2.
+ red; intro H'2.
elim (Pigeonhole_bis A f); auto with sets.
Qed.