diff options
Diffstat (limited to 'theories/Sets/Infinite_sets.v')
-rw-r--r-- | theories/Sets/Infinite_sets.v | 16 |
1 files changed, 7 insertions, 9 deletions
diff --git a/theories/Sets/Infinite_sets.v b/theories/Sets/Infinite_sets.v index afb9e0e1..897046ab 100644 --- a/theories/Sets/Infinite_sets.v +++ b/theories/Sets/Infinite_sets.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -24,8 +24,6 @@ (* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) (****************************************************************************) -(*i $Id: Infinite_sets.v 14641 2011-11-06 11:59:10Z herbelin $ i*) - Require Export Finite_sets. Require Export Constructive_sets. Require Export Classical_Type. @@ -58,7 +56,7 @@ Section Infinite_sets. intros A X H' H'0. elim H'0; intros H'1 H'2. apply Strict_super_set_contains_new_element; auto with sets. - red in |- *; intro H'3; apply H'. + red; intro H'3; apply H'. rewrite <- H'3; auto with sets. Qed. @@ -78,7 +76,7 @@ Section Infinite_sets. split. apply card_add; auto with sets. cut (In U A x). - intro H'4; red in |- *; auto with sets. + intro H'4; red; auto with sets. intros x0 H'5; elim H'5; auto with sets. intros x1 H'6; elim H'6; auto with sets. elim H'3; auto with sets. @@ -93,7 +91,7 @@ Section Infinite_sets. split. apply card_add; auto with sets. elim H'2; auto with sets. - red in |- *. + red. intros x2 H'9; elim H'9; auto with sets. intros x3 H'10; elim H'10; auto with sets. elim H'2; auto with sets. @@ -169,11 +167,11 @@ Section Infinite_sets. apply ex_intro with (x := Add U x0 x1). split; [ split; [ try assumption | idtac ] | idtac ]. apply card_add; auto with sets. - red in |- *; intro H'9; try exact H'9. + red; intro H'9; try exact H'9. apply H'1. elim H'4; intros H'10 H'11; rewrite <- H'11; clear H'4; auto with sets. elim H'4; intros H'9 H'10; try exact H'9; clear H'4; auto with sets. - red in |- *; auto with sets. + red; auto with sets. intros x2 H'4; elim H'4; auto with sets. intros x3 H'11; elim H'11; auto with sets. elim H'4; intros H'9 H'10; rewrite <- H'10; clear H'4; auto with sets. @@ -237,7 +235,7 @@ Section Infinite_sets. Proof. intros A f H' H'0 H'1. apply NNPP. - red in |- *; intro H'2. + red; intro H'2. elim (Pigeonhole_bis A f); auto with sets. Qed. |