summaryrefslogtreecommitdiff
path: root/theories/Sets/Infinite_sets.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Infinite_sets.v')
-rw-r--r--theories/Sets/Infinite_sets.v14
1 files changed, 7 insertions, 7 deletions
diff --git a/theories/Sets/Infinite_sets.v b/theories/Sets/Infinite_sets.v
index ae2143c8..b63ec1d4 100644
--- a/theories/Sets/Infinite_sets.v
+++ b/theories/Sets/Infinite_sets.v
@@ -24,7 +24,7 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Infinite_sets.v 10637 2008-03-07 23:52:56Z letouzey $ i*)
+(*i $Id$ i*)
Require Export Finite_sets.
Require Export Constructive_sets.
@@ -50,7 +50,7 @@ Hint Resolve Defn_of_Approximant.
Section Infinite_sets.
Variable U : Type.
-
+
Lemma make_new_approximant :
forall A X:Ensemble U,
~ Finite U A -> Approximant U A X -> Inhabited U (Setminus U A X).
@@ -61,7 +61,7 @@ Section Infinite_sets.
red in |- *; intro H'3; apply H'.
rewrite <- H'3; auto with sets.
Qed.
-
+
Lemma approximants_grow :
forall A X:Ensemble U,
~ Finite U A ->
@@ -101,7 +101,7 @@ Section Infinite_sets.
apply Defn_of_Approximant; auto with sets.
apply cardinal_finite with (n := S n0); auto with sets.
Qed.
-
+
Lemma approximants_grow' :
forall A X:Ensemble U,
~ Finite U A ->
@@ -121,7 +121,7 @@ Section Infinite_sets.
apply cardinal_finite with (n := S n); auto with sets.
apply approximants_grow with (X := X); auto with sets.
Qed.
-
+
Lemma approximant_can_be_any_size :
forall A X:Ensemble U,
~ Finite U A ->
@@ -135,7 +135,7 @@ Section Infinite_sets.
Qed.
Variable V : Type.
-
+
Theorem Image_set_continuous :
forall (A:Ensemble U) (f:U -> V) (X:Ensemble V),
Finite V X ->
@@ -230,7 +230,7 @@ Section Infinite_sets.
rewrite H'4; auto with sets.
elim H'3; auto with sets.
Qed.
-
+
Theorem Pigeonhole_ter :
forall (A:Ensemble U) (f:U -> V) (n:nat),
injective U V f -> Finite V (Im U V A f) -> Finite U A.