summaryrefslogtreecommitdiff
path: root/theories/Sets/Image.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Image.v')
-rwxr-xr-xtheories/Sets/Image.v205
1 files changed, 205 insertions, 0 deletions
diff --git a/theories/Sets/Image.v b/theories/Sets/Image.v
new file mode 100755
index 00000000..f58f2f81
--- /dev/null
+++ b/theories/Sets/Image.v
@@ -0,0 +1,205 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(****************************************************************************)
+(* *)
+(* Naive Set Theory in Coq *)
+(* *)
+(* INRIA INRIA *)
+(* Rocquencourt Sophia-Antipolis *)
+(* *)
+(* Coq V6.1 *)
+(* *)
+(* Gilles Kahn *)
+(* Gerard Huet *)
+(* *)
+(* *)
+(* *)
+(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
+(* to the Newton Institute for providing an exceptional work environment *)
+(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
+(****************************************************************************)
+
+(*i $Id: Image.v,v 1.6.2.1 2004/07/16 19:31:17 herbelin Exp $ i*)
+
+Require Export Finite_sets.
+Require Export Constructive_sets.
+Require Export Classical_Type.
+Require Export Classical_sets.
+Require Export Powerset.
+Require Export Powerset_facts.
+Require Export Powerset_Classical_facts.
+Require Export Gt.
+Require Export Lt.
+Require Export Le.
+Require Export Finite_sets_facts.
+
+Section Image.
+Variables U V : Type.
+
+Inductive Im (X:Ensemble U) (f:U -> V) : Ensemble V :=
+ Im_intro : forall x:U, In _ X x -> forall y:V, y = f x -> In _ (Im X f) y.
+
+Lemma Im_def :
+ forall (X:Ensemble U) (f:U -> V) (x:U), In _ X x -> In _ (Im X f) (f x).
+Proof.
+intros X f x H'; try assumption.
+apply Im_intro with (x := x); auto with sets.
+Qed.
+Hint Resolve Im_def.
+
+Lemma Im_add :
+ forall (X:Ensemble U) (x:U) (f:U -> V),
+ Im (Add _ X x) f = Add _ (Im X f) (f x).
+Proof.
+intros X x f.
+apply Extensionality_Ensembles.
+split; red in |- *; intros x0 H'.
+elim H'; intros.
+rewrite H0.
+elim Add_inv with U X x x1; auto with sets.
+destruct 1; auto with sets.
+elim Add_inv with V (Im X f) (f x) x0; auto with sets.
+destruct 1 as [x0 H y H0].
+rewrite H0; auto with sets.
+destruct 1; auto with sets.
+Qed.
+
+Lemma image_empty : forall f:U -> V, Im (Empty_set U) f = Empty_set V.
+Proof.
+intro f; try assumption.
+apply Extensionality_Ensembles.
+split; auto with sets.
+red in |- *.
+intros x H'; elim H'.
+intros x0 H'0; elim H'0; auto with sets.
+Qed.
+Hint Resolve image_empty.
+
+Lemma finite_image :
+ forall (X:Ensemble U) (f:U -> V), Finite _ X -> Finite _ (Im X f).
+Proof.
+intros X f H'; elim H'.
+rewrite (image_empty f); auto with sets.
+intros A H'0 H'1 x H'2; clear H' X.
+rewrite (Im_add A x f); auto with sets.
+apply Add_preserves_Finite; auto with sets.
+Qed.
+Hint Resolve finite_image.
+
+Lemma Im_inv :
+ forall (X:Ensemble U) (f:U -> V) (y:V),
+ In _ (Im X f) y -> exists x : U, In _ X x /\ f x = y.
+Proof.
+intros X f y H'; elim H'.
+intros x H'0 y0 H'1; rewrite H'1.
+exists x; auto with sets.
+Qed.
+
+Definition injective (f:U -> V) := forall x y:U, f x = f y -> x = y.
+
+Lemma not_injective_elim :
+ forall f:U -> V,
+ ~ injective f -> exists x : _, (exists y : _, f x = f y /\ x <> y).
+Proof.
+unfold injective in |- *; intros f H.
+cut (exists x : _, ~ (forall y:U, f x = f y -> x = y)).
+2: apply not_all_ex_not with (P := fun x:U => forall y:U, f x = f y -> x = y);
+ trivial with sets.
+destruct 1 as [x C]; exists x.
+cut (exists y : _, ~ (f x = f y -> x = y)).
+2: apply not_all_ex_not with (P := fun y:U => f x = f y -> x = y);
+ trivial with sets.
+destruct 1 as [y D]; exists y.
+apply imply_to_and; trivial with sets.
+Qed.
+
+Lemma cardinal_Im_intro :
+ forall (A:Ensemble U) (f:U -> V) (n:nat),
+ cardinal _ A n -> exists p : nat, cardinal _ (Im A f) p.
+Proof.
+intros.
+apply finite_cardinal; apply finite_image.
+apply cardinal_finite with n; trivial with sets.
+Qed.
+
+Lemma In_Image_elim :
+ forall (A:Ensemble U) (f:U -> V),
+ injective f -> forall x:U, In _ (Im A f) (f x) -> In _ A x.
+Proof.
+intros.
+elim Im_inv with A f (f x); trivial with sets.
+intros z C; elim C; intros InAz E.
+elim (H z x E); trivial with sets.
+Qed.
+
+Lemma injective_preserves_cardinal :
+ forall (A:Ensemble U) (f:U -> V) (n:nat),
+ injective f ->
+ cardinal _ A n -> forall n':nat, cardinal _ (Im A f) n' -> n' = n.
+Proof.
+induction 2 as [| A n H'0 H'1 x H'2]; auto with sets.
+rewrite (image_empty f).
+intros n' CE.
+apply cardinal_unicity with V (Empty_set V); auto with sets.
+intro n'.
+rewrite (Im_add A x f).
+intro H'3.
+elim cardinal_Im_intro with A f n; trivial with sets.
+intros i CI.
+lapply (H'1 i); trivial with sets.
+cut (~ In _ (Im A f) (f x)).
+intros H0 H1.
+apply cardinal_unicity with V (Add _ (Im A f) (f x)); trivial with sets.
+apply card_add; auto with sets.
+rewrite <- H1; trivial with sets.
+red in |- *; intro; apply H'2.
+apply In_Image_elim with f; trivial with sets.
+Qed.
+
+Lemma cardinal_decreases :
+ forall (A:Ensemble U) (f:U -> V) (n:nat),
+ cardinal U A n -> forall n':nat, cardinal V (Im A f) n' -> n' <= n.
+Proof.
+induction 1 as [| A n H'0 H'1 x H'2]; auto with sets.
+rewrite (image_empty f); intros.
+cut (n' = 0).
+intro E; rewrite E; trivial with sets.
+apply cardinal_unicity with V (Empty_set V); auto with sets.
+intro n'.
+rewrite (Im_add A x f).
+elim cardinal_Im_intro with A f n; trivial with sets.
+intros p C H'3.
+apply le_trans with (S p).
+apply card_Add_gen with V (Im A f) (f x); trivial with sets.
+apply le_n_S; auto with sets.
+Qed.
+
+Theorem Pigeonhole :
+ forall (A:Ensemble U) (f:U -> V) (n:nat),
+ cardinal U A n ->
+ forall n':nat, cardinal V (Im A f) n' -> n' < n -> ~ injective f.
+Proof.
+unfold not in |- *; intros A f n CAn n' CIfn' ltn'n I.
+cut (n' = n).
+intro E; generalize ltn'n; rewrite E; exact (lt_irrefl n).
+apply injective_preserves_cardinal with (A := A) (f := f) (n := n);
+ trivial with sets.
+Qed.
+
+Lemma Pigeonhole_principle :
+ forall (A:Ensemble U) (f:U -> V) (n:nat),
+ cardinal _ A n ->
+ forall n':nat,
+ cardinal _ (Im A f) n' ->
+ n' < n -> exists x : _, (exists y : _, f x = f y /\ x <> y).
+Proof.
+intros; apply not_injective_elim.
+apply Pigeonhole with A n n'; trivial with sets.
+Qed.
+End Image.
+Hint Resolve Im_def image_empty finite_image: sets v62. \ No newline at end of file