summaryrefslogtreecommitdiff
path: root/theories/Setoids/Setoid.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Setoids/Setoid.v')
-rw-r--r--theories/Setoids/Setoid.v5
1 files changed, 4 insertions, 1 deletions
diff --git a/theories/Setoids/Setoid.v b/theories/Setoids/Setoid.v
index ccecb9a4..75cffa7f 100644
--- a/theories/Setoids/Setoid.v
+++ b/theories/Setoids/Setoid.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -16,14 +16,17 @@ Definition Setoid_Theory := @Equivalence.
Definition Build_Setoid_Theory := @Build_Equivalence.
Definition Seq_refl A Aeq (s : Setoid_Theory A Aeq) : forall x:A, Aeq x x.
+Proof.
unfold Setoid_Theory in s. intros ; reflexivity.
Defined.
Definition Seq_sym A Aeq (s : Setoid_Theory A Aeq) : forall x y:A, Aeq x y -> Aeq y x.
+Proof.
unfold Setoid_Theory in s. intros ; symmetry ; assumption.
Defined.
Definition Seq_trans A Aeq (s : Setoid_Theory A Aeq) : forall x y z:A, Aeq x y -> Aeq y z -> Aeq x z.
+Proof.
unfold Setoid_Theory in s. intros ; transitivity y ; assumption.
Defined.