summaryrefslogtreecommitdiff
path: root/theories/Setoids/Setoid.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Setoids/Setoid.v')
-rw-r--r--theories/Setoids/Setoid.v28
1 files changed, 14 insertions, 14 deletions
diff --git a/theories/Setoids/Setoid.v b/theories/Setoids/Setoid.v
index a187a7c6..db4d699f 100644
--- a/theories/Setoids/Setoid.v
+++ b/theories/Setoids/Setoid.v
@@ -6,11 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Setoid.v 12187 2009-06-13 19:36:59Z msozeau $: i*)
+(*i $Id$: i*)
Require Export Coq.Classes.SetoidTactics.
-Export Morphisms.MorphismNotations.
+Export Morphisms.ProperNotations.
(** For backward compatibility *)
@@ -18,46 +18,46 @@ Definition Setoid_Theory := @Equivalence.
Definition Build_Setoid_Theory := @Build_Equivalence.
Definition Seq_refl A Aeq (s : Setoid_Theory A Aeq) : forall x:A, Aeq x x.
- unfold Setoid_Theory. intros ; reflexivity.
+ unfold Setoid_Theory in s. intros ; reflexivity.
Defined.
Definition Seq_sym A Aeq (s : Setoid_Theory A Aeq) : forall x y:A, Aeq x y -> Aeq y x.
- unfold Setoid_Theory. intros ; symmetry ; assumption.
+ unfold Setoid_Theory in s. intros ; symmetry ; assumption.
Defined.
Definition Seq_trans A Aeq (s : Setoid_Theory A Aeq) : forall x y z:A, Aeq x y -> Aeq y z -> Aeq x z.
- unfold Setoid_Theory. intros ; transitivity y ; assumption.
+ unfold Setoid_Theory in s. intros ; transitivity y ; assumption.
Defined.
-(** Some tactics for manipulating Setoid Theory not officially
+(** Some tactics for manipulating Setoid Theory not officially
declared as Setoid. *)
Ltac trans_st x :=
idtac "trans_st on Setoid_Theory is OBSOLETE";
idtac "use transitivity on Equivalence instead";
match goal with
- | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
+ | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
apply (Seq_trans _ _ H) with x; auto
end.
Ltac sym_st :=
idtac "sym_st on Setoid_Theory is OBSOLETE";
idtac "use symmetry on Equivalence instead";
- match goal with
- | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
+ match goal with
+ | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
apply (Seq_sym _ _ H); auto
end.
Ltac refl_st :=
idtac "refl_st on Setoid_Theory is OBSOLETE";
idtac "use reflexivity on Equivalence instead";
- match goal with
- | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
+ match goal with
+ | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
apply (Seq_refl _ _ H); auto
end.
Definition gen_st : forall A : Set, Setoid_Theory _ (@eq A).
-Proof.
- constructor; congruence.
+Proof.
+ constructor; congruence.
Qed.
-
+