summaryrefslogtreecommitdiff
path: root/theories/Relations
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations')
-rw-r--r--theories/Relations/Newman.v121
-rw-r--r--theories/Relations/Operators_Properties.v234
-rw-r--r--theories/Relations/Relation_Definitions.v28
-rw-r--r--theories/Relations/Relation_Operators.v36
-rw-r--r--theories/Relations/Relations.v2
-rw-r--r--theories/Relations/Rstar.v94
-rw-r--r--theories/Relations/vo.itarget4
7 files changed, 180 insertions, 339 deletions
diff --git a/theories/Relations/Newman.v b/theories/Relations/Newman.v
deleted file mode 100644
index e7bb66eb..00000000
--- a/theories/Relations/Newman.v
+++ /dev/null
@@ -1,121 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Newman.v 9245 2006-10-17 12:53:34Z notin $ i*)
-
-Require Import Rstar.
-
-Section Newman.
-
-Variable A : Type.
-Variable R : A -> A -> Prop.
-
-Let Rstar := Rstar A R.
-Let Rstar_reflexive := Rstar_reflexive A R.
-Let Rstar_transitive := Rstar_transitive A R.
-Let Rstar_Rstar' := Rstar_Rstar' A R.
-
-Definition coherence (x y:A) := ex2 (Rstar x) (Rstar y).
-
-Theorem coherence_intro :
- forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
-Proof fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
- ex_intro2 (Rstar x) (Rstar y) z h1 h2.
-
-(** A very simple case of coherence : *)
-
-Lemma Rstar_coherence : forall x y:A, Rstar x y -> coherence x y.
-Proof
- fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).
-
-(** coherence is symmetric *)
-Lemma coherence_sym : forall x y:A, coherence x y -> coherence y x.
-Proof
- fun (x y:A) (h:coherence x y) =>
- ex2_ind
- (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
- coherence_intro y x w h2 h1) h.
-
-Definition confluence (x:A) :=
- forall y z:A, Rstar x y -> Rstar x z -> coherence y z.
-
-Definition local_confluence (x:A) :=
- forall y z:A, R x y -> R x z -> coherence y z.
-
-Definition noetherian :=
- forall (x:A) (P:A -> Prop),
- (forall y:A, (forall z:A, R y z -> P z) -> P y) -> P x.
-
-Section Newman_section.
-
- (** The general hypotheses of the theorem *)
-
- Hypothesis Hyp1 : noetherian.
- Hypothesis Hyp2 : forall x:A, local_confluence x.
-
- (** The induction hypothesis *)
-
- Section Induct.
- Variable x : A.
- Hypothesis hyp_ind : forall u:A, R x u -> confluence u.
-
- (** Confluence in [x] *)
-
- Variables y z : A.
- Hypothesis h1 : Rstar x y.
- Hypothesis h2 : Rstar x z.
-
- (** particular case [x->u] and [u->*y] *)
- Section Newman_.
- Variable u : A.
- Hypothesis t1 : R x u.
- Hypothesis t2 : Rstar u y.
-
- (** In the usual diagram, we assume also [x->v] and [v->*z] *)
-
- Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
- Proof
- (* We draw the diagram ! *)
- fun (v:A) (u1:R x v) (u2:Rstar v z) =>
- ex2_ind
- (* local confluence in x for u,v *)
- (* gives w, u->*w and v->*w *)
- (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
- ex2_ind
- (* confluence in u => coherence(y,w) *)
- (* gives a, y->*a and z->*a *)
- (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
- ex2_ind
- (* confluence in v => coherence(a,z) *)
- (* gives b, a->*b and z->*b *)
- (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
- coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
- (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
- (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).
-
- Theorem caseRxy : coherence y z.
- Proof
- Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
- (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
- Diagram. (*i case x->v->*z i*)
- End Newman_.
-
- Theorem Ind_proof : coherence y z.
- Proof
- Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
- (Rstar_coherence x z h2) (*i case x=y i*)
- caseRxy. (*i case x->u->*z i*)
- End Induct.
-
- Theorem Newman : forall x:A, confluence x.
- Proof fun x:A => Hyp1 x confluence Ind_proof.
-
-End Newman_section.
-
-
-End Newman.
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index d0916b09..1976b435 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Operators_Properties.v 11481 2008-10-20 19:23:51Z herbelin $ i*)
+(*i $Id$ i*)
(************************************************************************)
(** * Some properties of the operators on relations *)
@@ -16,31 +16,41 @@
Require Import Relation_Definitions.
Require Import Relation_Operators.
-Require Import Setoid.
Section Properties.
+ Implicit Arguments clos_refl_trans [A].
+ Implicit Arguments clos_refl_trans_1n [A].
+ Implicit Arguments clos_refl_trans_n1 [A].
+ Implicit Arguments clos_refl_sym_trans [A].
+ Implicit Arguments clos_refl_sym_trans_1n [A].
+ Implicit Arguments clos_refl_sym_trans_n1 [A].
+ Implicit Arguments clos_trans [A].
+ Implicit Arguments clos_trans_1n [A].
+ Implicit Arguments clos_trans_n1 [A].
+ Implicit Arguments inclusion [A].
+ Implicit Arguments preorder [A].
+
Variable A : Type.
Variable R : relation A.
- Let incl (R1 R2:relation A) : Prop := forall x y:A, R1 x y -> R2 x y.
-
Section Clos_Refl_Trans.
+ Local Notation "R *" := (clos_refl_trans R) (at level 8, left associativity).
+
(** Correctness of the reflexive-transitive closure operator *)
- Lemma clos_rt_is_preorder : preorder A (clos_refl_trans A R).
+ Lemma clos_rt_is_preorder : preorder R*.
Proof.
apply Build_preorder.
exact (rt_refl A R).
-
+
exact (rt_trans A R).
Qed.
(** Idempotency of the reflexive-transitive closure operator *)
- Lemma clos_rt_idempotent :
- incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R).
+ Lemma clos_rt_idempotent : inclusion (R*)* R*.
Proof.
red in |- *.
induction 1; auto with sets.
@@ -56,7 +66,7 @@ Section Properties.
reflexive-symmetric-transitive closure *)
Lemma clos_rt_clos_rst :
- inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R).
+ inclusion (clos_refl_trans R) (clos_refl_sym_trans R).
Proof.
red in |- *.
induction 1; auto with sets.
@@ -65,7 +75,7 @@ Section Properties.
(** Correctness of the reflexive-symmetric-transitive closure *)
- Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans A R).
+ Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans R).
Proof.
apply Build_equivalence.
exact (rst_refl A R).
@@ -76,8 +86,8 @@ Section Properties.
(** Idempotency of the reflexive-symmetric-transitive closure operator *)
Lemma clos_rst_idempotent :
- incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
- (clos_refl_sym_trans A R).
+ inclusion (clos_refl_sym_trans (clos_refl_sym_trans R))
+ (clos_refl_sym_trans R).
Proof.
red in |- *.
induction 1; auto with sets.
@@ -91,11 +101,11 @@ Section Properties.
(** *** Equivalences between the different definition of the reflexive,
symmetric, transitive closures *)
- (** *** Contributed by P. Casteran *)
+ (** *** Contributed by P. Castéran *)
(** Direct transitive closure vs left-step extension *)
- Lemma t1n_trans : forall x y, clos_trans_1n A R x y -> clos_trans A R x y.
+ Lemma clos_t1n_trans : forall x y, clos_trans_1n R x y -> clos_trans R x y.
Proof.
induction 1.
left; assumption.
@@ -103,7 +113,7 @@ Section Properties.
left; auto.
Qed.
- Lemma trans_t1n : forall x y, clos_trans A R x y -> clos_trans_1n A R x y.
+ Lemma clos_trans_t1n : forall x y, clos_trans R x y -> clos_trans_1n R x y.
Proof.
induction 1.
left; assumption.
@@ -111,20 +121,20 @@ Section Properties.
right with y; auto.
right with y; auto.
eapply IHIHclos_trans1; auto.
- apply t1n_trans; auto.
+ apply clos_t1n_trans; auto.
Qed.
- Lemma t1n_trans_equiv : forall x y,
- clos_trans A R x y <-> clos_trans_1n A R x y.
+ Lemma clos_trans_t1n_iff : forall x y,
+ clos_trans R x y <-> clos_trans_1n R x y.
Proof.
split.
- apply trans_t1n.
- apply t1n_trans.
+ apply clos_trans_t1n.
+ apply clos_t1n_trans.
Qed.
(** Direct transitive closure vs right-step extension *)
- Lemma tn1_trans : forall x y, clos_trans_n1 A R x y -> clos_trans A R x y.
+ Lemma clos_tn1_trans : forall x y, clos_trans_n1 R x y -> clos_trans R x y.
Proof.
induction 1.
left; assumption.
@@ -132,7 +142,7 @@ Section Properties.
left; assumption.
Qed.
- Lemma trans_tn1 : forall x y, clos_trans A R x y -> clos_trans_n1 A R x y.
+ Lemma clos_trans_tn1 : forall x y, clos_trans R x y -> clos_trans_n1 R x y.
Proof.
induction 1.
left; assumption.
@@ -144,31 +154,31 @@ Section Properties.
right with y0; auto.
Qed.
- Lemma tn1_trans_equiv : forall x y,
- clos_trans A R x y <-> clos_trans_n1 A R x y.
+ Lemma clos_trans_tn1_iff : forall x y,
+ clos_trans R x y <-> clos_trans_n1 R x y.
Proof.
split.
- apply trans_tn1.
- apply tn1_trans.
+ apply clos_trans_tn1.
+ apply clos_tn1_trans.
Qed.
- (** Direct reflexive-transitive closure is equivalent to
+ (** Direct reflexive-transitive closure is equivalent to
transitivity by left-step extension *)
- Lemma R_rt1n : forall x y, R x y -> clos_refl_trans_1n A R x y.
+ Lemma clos_rt1n_step : forall x y, R x y -> clos_refl_trans_1n R x y.
Proof.
intros x y H.
right with y;[assumption|left].
Qed.
- Lemma R_rtn1 : forall x y, R x y -> clos_refl_trans_n1 A R x y.
+ Lemma clos_rtn1_step : forall x y, R x y -> clos_refl_trans_n1 R x y.
Proof.
intros x y H.
right with x;[assumption|left].
Qed.
- Lemma rt1n_trans : forall x y,
- clos_refl_trans_1n A R x y -> clos_refl_trans A R x y.
+ Lemma clos_rt1n_rt : forall x y,
+ clos_refl_trans_1n R x y -> clos_refl_trans R x y.
Proof.
induction 1.
constructor 2.
@@ -176,33 +186,33 @@ Section Properties.
constructor 1; auto.
Qed.
- Lemma trans_rt1n : forall x y,
- clos_refl_trans A R x y -> clos_refl_trans_1n A R x y.
+ Lemma clos_rt_rt1n : forall x y,
+ clos_refl_trans R x y -> clos_refl_trans_1n R x y.
Proof.
induction 1.
- apply R_rt1n; assumption.
+ apply clos_rt1n_step; assumption.
left.
generalize IHclos_refl_trans2; clear IHclos_refl_trans2;
induction IHclos_refl_trans1; auto.
right with y; auto.
eapply IHIHclos_refl_trans1; auto.
- apply rt1n_trans; auto.
+ apply clos_rt1n_rt; auto.
Qed.
- Lemma rt1n_trans_equiv : forall x y,
- clos_refl_trans A R x y <-> clos_refl_trans_1n A R x y.
+ Lemma clos_rt_rt1n_iff : forall x y,
+ clos_refl_trans R x y <-> clos_refl_trans_1n R x y.
Proof.
split.
- apply trans_rt1n.
- apply rt1n_trans.
+ apply clos_rt_rt1n.
+ apply clos_rt1n_rt.
Qed.
- (** Direct reflexive-transitive closure is equivalent to
+ (** Direct reflexive-transitive closure is equivalent to
transitivity by right-step extension *)
- Lemma rtn1_trans : forall x y,
- clos_refl_trans_n1 A R x y -> clos_refl_trans A R x y.
+ Lemma clos_rtn1_rt : forall x y,
+ clos_refl_trans_n1 R x y -> clos_refl_trans R x y.
Proof.
induction 1.
constructor 2.
@@ -210,37 +220,37 @@ Section Properties.
constructor 1; assumption.
Qed.
- Lemma trans_rtn1 : forall x y,
- clos_refl_trans A R x y -> clos_refl_trans_n1 A R x y.
+ Lemma clos_rt_rtn1 : forall x y,
+ clos_refl_trans R x y -> clos_refl_trans_n1 R x y.
Proof.
induction 1.
- apply R_rtn1; auto.
+ apply clos_rtn1_step; auto.
left.
elim IHclos_refl_trans2; auto.
intros.
right with y0; auto.
Qed.
- Lemma rtn1_trans_equiv : forall x y,
- clos_refl_trans A R x y <-> clos_refl_trans_n1 A R x y.
+ Lemma clos_rt_rtn1_iff : forall x y,
+ clos_refl_trans R x y <-> clos_refl_trans_n1 R x y.
Proof.
split.
- apply trans_rtn1.
- apply rtn1_trans.
+ apply clos_rt_rtn1.
+ apply clos_rtn1_rt.
Qed.
(** Induction on the left transitive step *)
Lemma clos_refl_trans_ind_left :
forall (x:A) (P:A -> Prop), P x ->
- (forall y z:A, clos_refl_trans A R x y -> P y -> R y z -> P z) ->
- forall z:A, clos_refl_trans A R x z -> P z.
+ (forall y z:A, clos_refl_trans R x y -> P y -> R y z -> P z) ->
+ forall z:A, clos_refl_trans R x z -> P z.
Proof.
intros.
revert H H0.
induction H1; intros; auto with sets.
apply H1 with x; auto with sets.
-
+
apply IHclos_refl_trans2.
apply IHclos_refl_trans1; auto with sets.
@@ -253,28 +263,30 @@ Section Properties.
Lemma rt1n_ind_right : forall (P : A -> Prop) (z:A),
P z ->
- (forall x y, R x y -> clos_refl_trans_1n A R y z -> P y -> P x) ->
- forall x, clos_refl_trans_1n A R x z -> P x.
+ (forall x y, R x y -> clos_refl_trans_1n R y z -> P y -> P x) ->
+ forall x, clos_refl_trans_1n R x z -> P x.
induction 3; auto.
apply H0 with y; auto.
Qed.
Lemma clos_refl_trans_ind_right : forall (P : A -> Prop) (z:A),
P z ->
- (forall x y, R x y -> P y -> clos_refl_trans A R y z -> P x) ->
- forall x, clos_refl_trans A R x z -> P x.
- intros.
- rewrite rt1n_trans_equiv in H1.
- elim H1 using rt1n_ind_right; auto.
- intros; rewrite <- rt1n_trans_equiv in *.
+ (forall x y, R x y -> P y -> clos_refl_trans R y z -> P x) ->
+ forall x, clos_refl_trans R x z -> P x.
+ intros P z Hz IH x Hxz.
+ apply clos_rt_rt1n_iff in Hxz.
+ elim Hxz using rt1n_ind_right; auto.
+ clear x Hxz.
+ intros x y Hxy Hyz Hy.
+ apply clos_rt_rt1n_iff in Hyz.
eauto.
Qed.
- (** Direct reflexive-symmetric-transitive closure is equivalent to
+ (** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric left-step extension *)
- Lemma rts1n_rts : forall x y,
- clos_refl_sym_trans_1n A R x y -> clos_refl_sym_trans A R x y.
+ Lemma clos_rst1n_rst : forall x y,
+ clos_refl_sym_trans_1n R x y -> clos_refl_sym_trans R x y.
Proof.
induction 1.
constructor 2.
@@ -282,48 +294,47 @@ Section Properties.
case H;[constructor 1|constructor 3; constructor 1]; auto.
Qed.
- Lemma rts_1n_trans : forall x y, clos_refl_sym_trans_1n A R x y ->
- forall z, clos_refl_sym_trans_1n A R y z ->
- clos_refl_sym_trans_1n A R x z.
+ Lemma clos_rst1n_trans : forall x y z, clos_refl_sym_trans_1n R x y ->
+ clos_refl_sym_trans_1n R y z -> clos_refl_sym_trans_1n R x z.
induction 1.
auto.
intros; right with y; eauto.
Qed.
- Lemma rts1n_sym : forall x y, clos_refl_sym_trans_1n A R x y ->
- clos_refl_sym_trans_1n A R y x.
+ Lemma clos_rst1n_sym : forall x y, clos_refl_sym_trans_1n R x y ->
+ clos_refl_sym_trans_1n R y x.
Proof.
intros x y H; elim H.
constructor 1.
- intros x0 y0 z D H0 H1; apply rts_1n_trans with y0; auto.
+ intros x0 y0 z D H0 H1; apply clos_rst1n_trans with y0; auto.
right with x0.
tauto.
left.
Qed.
- Lemma rts_rts1n : forall x y,
- clos_refl_sym_trans A R x y -> clos_refl_sym_trans_1n A R x y.
+ Lemma clos_rst_rst1n : forall x y,
+ clos_refl_sym_trans R x y -> clos_refl_sym_trans_1n R x y.
induction 1.
constructor 2 with y; auto.
constructor 1.
constructor 1.
- apply rts1n_sym; auto.
- eapply rts_1n_trans; eauto.
+ apply clos_rst1n_sym; auto.
+ eapply clos_rst1n_trans; eauto.
Qed.
- Lemma rts_rts1n_equiv : forall x y,
- clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_1n A R x y.
+ Lemma clos_rst_rst1n_iff : forall x y,
+ clos_refl_sym_trans R x y <-> clos_refl_sym_trans_1n R x y.
Proof.
split.
- apply rts_rts1n.
- apply rts1n_rts.
+ apply clos_rst_rst1n.
+ apply clos_rst1n_rst.
Qed.
- (** Direct reflexive-symmetric-transitive closure is equivalent to
+ (** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric right-step extension *)
- Lemma rtsn1_rts : forall x y,
- clos_refl_sym_trans_n1 A R x y -> clos_refl_sym_trans A R x y.
+ Lemma clos_rstn1_rst : forall x y,
+ clos_refl_sym_trans_n1 R x y -> clos_refl_sym_trans R x y.
Proof.
induction 1.
constructor 2.
@@ -331,46 +342,79 @@ Section Properties.
case H;[constructor 1|constructor 3; constructor 1]; auto.
Qed.
- Lemma rtsn1_trans : forall y z, clos_refl_sym_trans_n1 A R y z->
- forall x, clos_refl_sym_trans_n1 A R x y ->
- clos_refl_sym_trans_n1 A R x z.
+ Lemma clos_rstn1_trans : forall x y z, clos_refl_sym_trans_n1 R x y ->
+ clos_refl_sym_trans_n1 R y z -> clos_refl_sym_trans_n1 R x z.
Proof.
- induction 1.
+ intros x y z H1 H2.
+ induction H2.
auto.
intros.
right with y0; eauto.
Qed.
- Lemma rtsn1_sym : forall x y, clos_refl_sym_trans_n1 A R x y ->
- clos_refl_sym_trans_n1 A R y x.
+ Lemma clos_rstn1_sym : forall x y, clos_refl_sym_trans_n1 R x y ->
+ clos_refl_sym_trans_n1 R y x.
Proof.
intros x y H; elim H.
constructor 1.
- intros y0 z D H0 H1. apply rtsn1_trans with y0; auto.
+ intros y0 z D H0 H1. apply clos_rstn1_trans with y0; auto.
right with z.
tauto.
left.
Qed.
- Lemma rts_rtsn1 : forall x y,
- clos_refl_sym_trans A R x y -> clos_refl_sym_trans_n1 A R x y.
+ Lemma clos_rst_rstn1 : forall x y,
+ clos_refl_sym_trans R x y -> clos_refl_sym_trans_n1 R x y.
Proof.
induction 1.
constructor 2 with x; auto.
constructor 1.
constructor 1.
- apply rtsn1_sym; auto.
- eapply rtsn1_trans; eauto.
+ apply clos_rstn1_sym; auto.
+ eapply clos_rstn1_trans; eauto.
Qed.
- Lemma rts_rtsn1_equiv : forall x y,
- clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_n1 A R x y.
+ Lemma clos_rst_rstn1_iff : forall x y,
+ clos_refl_sym_trans R x y <-> clos_refl_sym_trans_n1 R x y.
Proof.
split.
- apply rts_rtsn1.
- apply rtsn1_rts.
+ apply clos_rst_rstn1.
+ apply clos_rstn1_rst.
Qed.
End Equivalences.
End Properties.
+
+(* begin hide *)
+(* Compatibility *)
+Notation trans_tn1 := clos_trans_tn1 (only parsing).
+Notation tn1_trans := clos_tn1_trans (only parsing).
+Notation tn1_trans_equiv := clos_trans_tn1_iff (only parsing).
+
+Notation trans_t1n := clos_trans_t1n (only parsing).
+Notation t1n_trans := clos_t1n_trans (only parsing).
+Notation t1n_trans_equiv := clos_trans_t1n_iff (only parsing).
+
+Notation R_rtn1 := clos_rtn1_step (only parsing).
+Notation trans_rt1n := clos_rt_rt1n (only parsing).
+Notation rt1n_trans := clos_rt1n_rt (only parsing).
+Notation rt1n_trans_equiv := clos_rt_rt1n_iff (only parsing).
+
+Notation R_rt1n := clos_rt1n_step (only parsing).
+Notation trans_rtn1 := clos_rt_rtn1 (only parsing).
+Notation rtn1_trans := clos_rtn1_rt (only parsing).
+Notation rtn1_trans_equiv := clos_rt_rtn1_iff (only parsing).
+
+Notation rts1n_rts := clos_rst1n_rst (only parsing).
+Notation rts_1n_trans := clos_rst1n_trans (only parsing).
+Notation rts1n_sym := clos_rst1n_sym (only parsing).
+Notation rts_rts1n := clos_rst_rst1n (only parsing).
+Notation rts_rts1n_equiv := clos_rst_rst1n_iff (only parsing).
+
+Notation rtsn1_rts := clos_rstn1_rst (only parsing).
+Notation rtsn1_trans := clos_rstn1_trans (only parsing).
+Notation rtsn1_sym := clos_rstn1_sym (only parsing).
+Notation rts_rtsn1 := clos_rst_rstn1 (only parsing).
+Notation rts_rtsn1_equiv := clos_rst_rstn1_iff (only parsing).
+(* end hide *)
diff --git a/theories/Relations/Relation_Definitions.v b/theories/Relations/Relation_Definitions.v
index 762da1ff..c03c4b95 100644
--- a/theories/Relations/Relation_Definitions.v
+++ b/theories/Relations/Relation_Definitions.v
@@ -6,19 +6,19 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Relation_Definitions.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id$ i*)
Section Relation_Definition.
Variable A : Type.
-
+
Definition relation := A -> A -> Prop.
Variable R : relation.
-
+
Section General_Properties_of_Relations.
-
+
Definition reflexive : Prop := forall x:A, R x x.
Definition transitive : Prop := forall x y z:A, R x y -> R y z -> R x z.
Definition symmetric : Prop := forall x y:A, R x y -> R y x.
@@ -32,33 +32,33 @@ Section Relation_Definition.
Section Sets_of_Relations.
-
- Record preorder : Prop :=
+
+ Record preorder : Prop :=
{ preord_refl : reflexive; preord_trans : transitive}.
-
- Record order : Prop :=
+
+ Record order : Prop :=
{ ord_refl : reflexive;
ord_trans : transitive;
ord_antisym : antisymmetric}.
-
- Record equivalence : Prop :=
+
+ Record equivalence : Prop :=
{ equiv_refl : reflexive;
equiv_trans : transitive;
equiv_sym : symmetric}.
-
+
Record PER : Prop := {per_sym : symmetric; per_trans : transitive}.
End Sets_of_Relations.
Section Relations_of_Relations.
-
+
Definition inclusion (R1 R2:relation) : Prop :=
forall x y:A, R1 x y -> R2 x y.
-
+
Definition same_relation (R1 R2:relation) : Prop :=
inclusion R1 R2 /\ inclusion R2 R1.
-
+
Definition commut (R1 R2:relation) : Prop :=
forall x y:A,
R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v
index 027a9e6c..39e0331d 100644
--- a/theories/Relations/Relation_Operators.v
+++ b/theories/Relations/Relation_Operators.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Relation_Operators.v 11481 2008-10-20 19:23:51Z herbelin $ i*)
+(*i $Id$ i*)
(************************************************************************)
(** * Bruno Barras, Cristina Cornes *)
@@ -17,7 +17,6 @@
(************************************************************************)
Require Import Relation_Definitions.
-Require Import List.
(** * Some operators to build relations *)
@@ -65,7 +64,7 @@ Section Reflexive_Transitive_Closure.
Inductive clos_refl_trans_1n (x: A) : A -> Prop :=
| rt1n_refl : clos_refl_trans_1n x x
- | rt1n_trans (y z:A) :
+ | rt1n_trans (y z:A) :
R x y -> clos_refl_trans_1n y z -> clos_refl_trans_1n x z.
(** Alternative definition by transitive extension on the right *)
@@ -79,10 +78,10 @@ End Reflexive_Transitive_Closure.
(** ** Reflexive-symmetric-transitive closure *)
-Section Reflexive_Symetric_Transitive_Closure.
+Section Reflexive_Symmetric_Transitive_Closure.
Variable A : Type.
Variable R : relation A.
-
+
(** Definition by direct reflexive-symmetric-transitive closure *)
Inductive clos_refl_sym_trans : relation A :=
@@ -96,18 +95,18 @@ Section Reflexive_Symetric_Transitive_Closure.
(** Alternative definition by symmetric-transitive extension on the left *)
Inductive clos_refl_sym_trans_1n (x: A) : A -> Prop :=
- | rts1n_refl : clos_refl_sym_trans_1n x x
- | rts1n_trans (y z:A) : R x y \/ R y x ->
+ | rst1n_refl : clos_refl_sym_trans_1n x x
+ | rst1n_trans (y z:A) : R x y \/ R y x ->
clos_refl_sym_trans_1n y z -> clos_refl_sym_trans_1n x z.
(** Alternative definition by symmetric-transitive extension on the right *)
Inductive clos_refl_sym_trans_n1 (x: A) : A -> Prop :=
- | rtsn1_refl : clos_refl_sym_trans_n1 x x
- | rtsn1_trans (y z:A) : R y z \/ R z y ->
+ | rstn1_refl : clos_refl_sym_trans_n1 x x
+ | rstn1_trans (y z:A) : R y z \/ R z y ->
clos_refl_sym_trans_n1 x y -> clos_refl_sym_trans_n1 x z.
-End Reflexive_Symetric_Transitive_Closure.
+End Reflexive_Symmetric_Transitive_Closure.
(** ** Converse of a relation *)
@@ -139,7 +138,7 @@ Inductive le_AsB : A + B -> A + B -> Prop :=
| le_ab (x:A) (y:B) : le_AsB (inl _ x) (inr _ y)
| le_bb (x y:B) : leB x y -> le_AsB (inr _ x) (inr _ y).
-End Disjoint_Union.
+End Disjoint_Union.
(** ** Lexicographic order on dependent pairs *)
@@ -187,14 +186,15 @@ Section Swap.
| sp_swap x y (p:A * A) : symprod A A R R (x, y) p -> swapprod (y, x) p.
End Swap.
+Local Open Scope list_scope.
Section Lexicographic_Exponentiation.
-
+
Variable A : Set.
Variable leA : A -> A -> Prop.
Let Nil := nil (A:=A).
Let List := list A.
-
+
Inductive Ltl : List -> List -> Prop :=
| Lt_nil (a:A) (x:List) : Ltl Nil (a :: x)
| Lt_hd (a b:A) : leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
@@ -207,7 +207,7 @@ Section Lexicographic_Exponentiation.
leA x y -> Desc (l ++ y :: Nil) -> Desc ((l ++ y :: Nil) ++ x :: Nil).
Definition Pow : Set := sig Desc.
-
+
Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).
End Lexicographic_Exponentiation.
@@ -215,3 +215,11 @@ End Lexicographic_Exponentiation.
Hint Unfold transp union: sets v62.
Hint Resolve t_step rt_step rt_refl rst_step rst_refl: sets v62.
Hint Immediate rst_sym: sets v62.
+
+(* begin hide *)
+(* Compatibility *)
+Notation rts1n_refl := rst1n_refl (only parsing).
+Notation rts1n_trans := rst1n_trans (only parsing).
+Notation rtsn1_refl := rstn1_refl (only parsing).
+Notation rtsn1_trans := rstn1_trans (only parsing).
+(* end hide *)
diff --git a/theories/Relations/Relations.v b/theories/Relations/Relations.v
index 6368ae25..1c6df08a 100644
--- a/theories/Relations/Relations.v
+++ b/theories/Relations/Relations.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Relations.v 9598 2007-02-06 19:45:52Z herbelin $ i*)
+(*i $Id$ i*)
Require Export Relation_Definitions.
Require Export Relation_Operators.
diff --git a/theories/Relations/Rstar.v b/theories/Relations/Rstar.v
deleted file mode 100644
index 82668006..00000000
--- a/theories/Relations/Rstar.v
+++ /dev/null
@@ -1,94 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Rstar.v 9642 2007-02-12 10:31:53Z herbelin $ i*)
-
-(** Properties of a binary relation [R] on type [A] *)
-
-Section Rstar.
-
- Variable A : Type.
- Variable R : A -> A -> Prop.
-
- (** Definition of the reflexive-transitive closure [R*] of [R] *)
- (** Smallest reflexive [P] containing [R o P] *)
-
- Definition Rstar (x y:A) :=
- forall P:A -> A -> Prop,
- (forall u:A, P u u) -> (forall u v w:A, R u v -> P v w -> P u w) -> P x y.
-
- Theorem Rstar_reflexive : forall x:A, Rstar x x.
- Proof.
- unfold Rstar. intros x P P_refl RoP. apply P_refl.
- Qed.
-
- Theorem Rstar_R : forall x y z:A, R x y -> Rstar y z -> Rstar x z.
- Proof.
- intros x y z R_xy Rstar_yz.
- unfold Rstar.
- intros P P_refl RoP. apply RoP with (v:=y).
- assumption.
- apply Rstar_yz; assumption.
- Qed.
-
- (** We conclude with transitivity of [Rstar] : *)
-
- Theorem Rstar_transitive :
- forall x y z:A, Rstar x y -> Rstar y z -> Rstar x z.
- Proof.
- intros x y z Rstar_xy; unfold Rstar in Rstar_xy.
- apply Rstar_xy; trivial.
- intros u v w R_uv fz Rstar_wz.
- apply Rstar_R with (y:=v); auto.
- Qed.
-
- (** Another characterization of [R*] *)
- (** Smallest reflexive [P] containing [R o R*] *)
-
- Definition Rstar' (x y:A) :=
- forall P:A -> A -> Prop,
- P x x -> (forall u:A, R x u -> Rstar u y -> P x y) -> P x y.
-
- Theorem Rstar'_reflexive : forall x:A, Rstar' x x.
- Proof.
- unfold Rstar'; intros; assumption.
- Qed.
-
- Theorem Rstar'_R : forall x y z:A, R x z -> Rstar z y -> Rstar' x y.
- Proof.
- unfold Rstar'. intros x y z Rxz Rstar_zy P Pxx RoP.
- apply RoP with (u:=z); trivial.
- Qed.
-
- (** Equivalence of the two definitions: *)
-
- Theorem Rstar'_Rstar : forall x y:A, Rstar' x y -> Rstar x y.
- Proof.
- intros x z Rstar'_xz; unfold Rstar' in Rstar'_xz.
- apply Rstar'_xz.
- exact (Rstar_reflexive x).
- intro y; generalize x y z; exact Rstar_R.
- Qed.
-
- Theorem Rstar_Rstar' : forall x y:A, Rstar x y -> Rstar' x y.
- Proof.
- intros.
- apply H.
- exact Rstar'_reflexive.
- intros u v w R_uv Rs'_vw. apply Rstar'_R with (z:=v).
- assumption.
- apply Rstar'_Rstar; assumption.
- Qed.
-
- (** Property of Commutativity of two relations *)
-
- Definition commut (A:Type) (R1 R2:A -> A -> Prop) :=
- forall x y:A,
- R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
-
-End Rstar.
diff --git a/theories/Relations/vo.itarget b/theories/Relations/vo.itarget
new file mode 100644
index 00000000..9d81dd07
--- /dev/null
+++ b/theories/Relations/vo.itarget
@@ -0,0 +1,4 @@
+Operators_Properties.vo
+Relation_Definitions.vo
+Relation_Operators.vo
+Relations.vo