summaryrefslogtreecommitdiff
path: root/theories/Relations/Relation_Operators.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Relation_Operators.v')
-rw-r--r--[-rwxr-xr-x]theories/Relations/Relation_Operators.v28
1 files changed, 14 insertions, 14 deletions
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v
index b6359ada..edc112e5 100755..100644
--- a/theories/Relations/Relation_Operators.v
+++ b/theories/Relations/Relation_Operators.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Relation_Operators.v,v 1.8.2.1 2004/07/16 19:31:16 herbelin Exp $ i*)
+(*i $Id: Relation_Operators.v 8642 2006-03-17 10:09:02Z notin $ i*)
(****************************************************************************)
(* Bruno Barras, Cristina Cornes *)
@@ -22,31 +22,31 @@ Require Import List.
(** Some operators to build relations *)
Section Transitive_Closure.
- Variable A : Set.
+ Variable A : Type.
Variable R : relation A.
- Inductive clos_trans : A -> A -> Prop :=
- | t_step : forall x y:A, R x y -> clos_trans x y
+ Inductive clos_trans (x: A) : A -> Prop :=
+ | t_step : forall y:A, R x y -> clos_trans x y
| t_trans :
- forall x y z:A, clos_trans x y -> clos_trans y z -> clos_trans x z.
+ forall y z:A, clos_trans x y -> clos_trans y z -> clos_trans x z.
End Transitive_Closure.
Section Reflexive_Transitive_Closure.
- Variable A : Set.
+ Variable A : Type.
Variable R : relation A.
- Inductive clos_refl_trans : relation A :=
- | rt_step : forall x y:A, R x y -> clos_refl_trans x y
- | rt_refl : forall x:A, clos_refl_trans x x
+ Inductive clos_refl_trans (x:A) : A -> Prop:=
+ | rt_step : forall y:A, R x y -> clos_refl_trans x y
+ | rt_refl : clos_refl_trans x x
| rt_trans :
- forall x y z:A,
+ forall y z:A,
clos_refl_trans x y -> clos_refl_trans y z -> clos_refl_trans x z.
End Reflexive_Transitive_Closure.
Section Reflexive_Symetric_Transitive_Closure.
- Variable A : Set.
+ Variable A : Type.
Variable R : relation A.
Inductive clos_refl_sym_trans : relation A :=
@@ -62,7 +62,7 @@ End Reflexive_Symetric_Transitive_Closure.
Section Transposee.
- Variable A : Set.
+ Variable A : Type.
Variable R : relation A.
Definition transp (x y:A) := R y x.
@@ -70,7 +70,7 @@ End Transposee.
Section Union.
- Variable A : Set.
+ Variable A : Type.
Variables R1 R2 : relation A.
Definition union (x y:A) := R1 x y \/ R2 x y.
@@ -164,4 +164,4 @@ End Lexicographic_Exponentiation.
Hint Unfold transp union: sets v62.
Hint Resolve t_step rt_step rt_refl rst_step rst_refl: sets v62.
-Hint Immediate rst_sym: sets v62. \ No newline at end of file
+Hint Immediate rst_sym: sets v62.