summaryrefslogtreecommitdiff
path: root/theories/Relations/Operators_Properties.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Operators_Properties.v')
-rw-r--r--theories/Relations/Operators_Properties.v144
1 files changed, 73 insertions, 71 deletions
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index 22a08a27..40fd8f36 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Operators_Properties.v 8642 2006-03-17 10:09:02Z notin $ i*)
+(*i $Id: Operators_Properties.v 9245 2006-10-17 12:53:34Z notin $ i*)
(****************************************************************************)
(* Bruno Barras *)
@@ -22,75 +22,77 @@ Section Properties.
Variable R : relation A.
Let incl (R1 R2:relation A) : Prop := forall x y:A, R1 x y -> R2 x y.
-
-Section Clos_Refl_Trans.
-
- Lemma clos_rt_is_preorder : preorder A (clos_refl_trans A R).
-apply Build_preorder.
-exact (rt_refl A R).
-
-exact (rt_trans A R).
-Qed.
-
-
-
-Lemma clos_rt_idempotent :
- incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R).
-red in |- *.
-induction 1; auto with sets.
-intros.
-apply rt_trans with y; auto with sets.
-Qed.
-
- Lemma clos_refl_trans_ind_left :
- forall (A:Set) (R:A -> A -> Prop) (M:A) (P:A -> Prop),
- P M ->
- (forall P0 N:A, clos_refl_trans A R M P0 -> P P0 -> R P0 N -> P N) ->
- forall a:A, clos_refl_trans A R M a -> P a.
-intros.
-generalize H H0.
-clear H H0.
-elim H1; intros; auto with sets.
-apply H2 with x; auto with sets.
-
-apply H3.
-apply H0; auto with sets.
-
-intros.
-apply H5 with P0; auto with sets.
-apply rt_trans with y; auto with sets.
-Qed.
-
-
-End Clos_Refl_Trans.
-
-
-Section Clos_Refl_Sym_Trans.
-
- Lemma clos_rt_clos_rst :
- inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R).
-red in |- *.
-induction 1; auto with sets.
-apply rst_trans with y; auto with sets.
-Qed.
-
- Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans A R).
-apply Build_equivalence.
-exact (rst_refl A R).
-
-exact (rst_trans A R).
-
-exact (rst_sym A R).
-Qed.
-
- Lemma clos_rst_idempotent :
- incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
- (clos_refl_sym_trans A R).
-red in |- *.
-induction 1; auto with sets.
-apply rst_trans with y; auto with sets.
-Qed.
-
-End Clos_Refl_Sym_Trans.
+
+ Section Clos_Refl_Trans.
+
+ Lemma clos_rt_is_preorder : preorder A (clos_refl_trans A R).
+ Proof.
+ apply Build_preorder.
+ exact (rt_refl A R).
+
+ exact (rt_trans A R).
+ Qed.
+
+ Lemma clos_rt_idempotent :
+ incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R).
+ Proof.
+ red in |- *.
+ induction 1; auto with sets.
+ intros.
+ apply rt_trans with y; auto with sets.
+ Qed.
+
+ Lemma clos_refl_trans_ind_left :
+ forall (A:Set) (R:A -> A -> Prop) (M:A) (P:A -> Prop),
+ P M ->
+ (forall P0 N:A, clos_refl_trans A R M P0 -> P P0 -> R P0 N -> P N) ->
+ forall a:A, clos_refl_trans A R M a -> P a.
+ Proof.
+ intros.
+ generalize H H0.
+ clear H H0.
+ elim H1; intros; auto with sets.
+ apply H2 with x; auto with sets.
+
+ apply H3.
+ apply H0; auto with sets.
+
+ intros.
+ apply H5 with P0; auto with sets.
+ apply rt_trans with y; auto with sets.
+ Qed.
+
+
+ End Clos_Refl_Trans.
+
+
+ Section Clos_Refl_Sym_Trans.
+
+ Lemma clos_rt_clos_rst :
+ inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R).
+ Proof.
+ red in |- *.
+ induction 1; auto with sets.
+ apply rst_trans with y; auto with sets.
+ Qed.
+
+ Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans A R).
+ Proof.
+ apply Build_equivalence.
+ exact (rst_refl A R).
+ exact (rst_trans A R).
+ exact (rst_sym A R).
+ Qed.
+
+ Lemma clos_rst_idempotent :
+ incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
+ (clos_refl_sym_trans A R).
+ Proof.
+ red in |- *.
+ induction 1; auto with sets.
+ apply rst_trans with y; auto with sets.
+ Qed.
+
+ End Clos_Refl_Sym_Trans.
End Properties. \ No newline at end of file