summaryrefslogtreecommitdiff
path: root/theories/Relations/Newman.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Newman.v')
-rwxr-xr-xtheories/Relations/Newman.v123
1 files changed, 123 insertions, 0 deletions
diff --git a/theories/Relations/Newman.v b/theories/Relations/Newman.v
new file mode 100755
index 00000000..3cf604d8
--- /dev/null
+++ b/theories/Relations/Newman.v
@@ -0,0 +1,123 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Newman.v,v 1.7.2.1 2004/07/16 19:31:16 herbelin Exp $ i*)
+
+Require Import Rstar.
+
+Section Newman.
+
+Variable A : Type.
+Variable R : A -> A -> Prop.
+
+Let Rstar := Rstar A R.
+Let Rstar_reflexive := Rstar_reflexive A R.
+Let Rstar_transitive := Rstar_transitive A R.
+Let Rstar_Rstar' := Rstar_Rstar' A R.
+
+Definition coherence (x y:A) := ex2 (Rstar x) (Rstar y).
+
+Theorem coherence_intro :
+ forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
+Proof
+ fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
+ ex_intro2 (Rstar x) (Rstar y) z h1 h2.
+
+(** A very simple case of coherence : *)
+
+Lemma Rstar_coherence : forall x y:A, Rstar x y -> coherence x y.
+ Proof
+ fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).
+
+(** coherence is symmetric *)
+Lemma coherence_sym : forall x y:A, coherence x y -> coherence y x.
+ Proof
+ fun (x y:A) (h:coherence x y) =>
+ ex2_ind
+ (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
+ coherence_intro y x w h2 h1) h.
+
+Definition confluence (x:A) :=
+ forall y z:A, Rstar x y -> Rstar x z -> coherence y z.
+
+Definition local_confluence (x:A) :=
+ forall y z:A, R x y -> R x z -> coherence y z.
+
+Definition noetherian :=
+ forall (x:A) (P:A -> Prop),
+ (forall y:A, (forall z:A, R y z -> P z) -> P y) -> P x.
+
+Section Newman_section.
+
+(** The general hypotheses of the theorem *)
+
+Hypothesis Hyp1 : noetherian.
+Hypothesis Hyp2 : forall x:A, local_confluence x.
+
+(** The induction hypothesis *)
+
+Section Induct.
+ Variable x : A.
+ Hypothesis hyp_ind : forall u:A, R x u -> confluence u.
+
+(** Confluence in [x] *)
+
+ Variables y z : A.
+ Hypothesis h1 : Rstar x y.
+ Hypothesis h2 : Rstar x z.
+
+(** particular case [x->u] and [u->*y] *)
+Section Newman_.
+ Variable u : A.
+ Hypothesis t1 : R x u.
+ Hypothesis t2 : Rstar u y.
+
+(** In the usual diagram, we assume also [x->v] and [v->*z] *)
+
+Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
+
+Proof
+ (* We draw the diagram ! *)
+ fun (v:A) (u1:R x v) (u2:Rstar v z) =>
+ ex2_ind
+ (* local confluence in x for u,v *)
+ (* gives w, u->*w and v->*w *)
+ (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
+ ex2_ind
+ (* confluence in u => coherence(y,w) *)
+ (* gives a, y->*a and z->*a *)
+ (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
+ ex2_ind
+ (* confluence in v => coherence(a,z) *)
+ (* gives b, a->*b and z->*b *)
+ (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
+ coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
+ (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
+ (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).
+
+Theorem caseRxy : coherence y z.
+Proof
+ Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
+ (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
+ Diagram. (*i case x->v->*z i*)
+End Newman_.
+
+Theorem Ind_proof : coherence y z.
+Proof
+ Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
+ (Rstar_coherence x z h2) (*i case x=y i*)
+ caseRxy. (*i case x->u->*z i*)
+End Induct.
+
+Theorem Newman : forall x:A, confluence x.
+Proof fun x:A => Hyp1 x confluence Ind_proof.
+
+End Newman_section.
+
+
+End Newman.