summaryrefslogtreecommitdiff
path: root/theories/Relations/Newman.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Newman.v')
-rw-r--r--theories/Relations/Newman.v132
1 files changed, 65 insertions, 67 deletions
diff --git a/theories/Relations/Newman.v b/theories/Relations/Newman.v
index ae914933..e7bb66eb 100644
--- a/theories/Relations/Newman.v
+++ b/theories/Relations/Newman.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Newman.v 8642 2006-03-17 10:09:02Z notin $ i*)
+(*i $Id: Newman.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import Rstar.
@@ -23,24 +23,23 @@ Let Rstar_Rstar' := Rstar_Rstar' A R.
Definition coherence (x y:A) := ex2 (Rstar x) (Rstar y).
Theorem coherence_intro :
- forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
-Proof
- fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
- ex_intro2 (Rstar x) (Rstar y) z h1 h2.
+ forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
+Proof fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
+ ex_intro2 (Rstar x) (Rstar y) z h1 h2.
(** A very simple case of coherence : *)
Lemma Rstar_coherence : forall x y:A, Rstar x y -> coherence x y.
- Proof
- fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).
+Proof
+ fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).
(** coherence is symmetric *)
Lemma coherence_sym : forall x y:A, coherence x y -> coherence y x.
- Proof
- fun (x y:A) (h:coherence x y) =>
- ex2_ind
- (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
- coherence_intro y x w h2 h1) h.
+Proof
+ fun (x y:A) (h:coherence x y) =>
+ ex2_ind
+ (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
+ coherence_intro y x w h2 h1) h.
Definition confluence (x:A) :=
forall y z:A, Rstar x y -> Rstar x z -> coherence y z.
@@ -54,68 +53,67 @@ Definition noetherian :=
Section Newman_section.
-(** The general hypotheses of the theorem *)
+ (** The general hypotheses of the theorem *)
-Hypothesis Hyp1 : noetherian.
-Hypothesis Hyp2 : forall x:A, local_confluence x.
+ Hypothesis Hyp1 : noetherian.
+ Hypothesis Hyp2 : forall x:A, local_confluence x.
-(** The induction hypothesis *)
+ (** The induction hypothesis *)
-Section Induct.
- Variable x : A.
- Hypothesis hyp_ind : forall u:A, R x u -> confluence u.
+ Section Induct.
+ Variable x : A.
+ Hypothesis hyp_ind : forall u:A, R x u -> confluence u.
-(** Confluence in [x] *)
+ (** Confluence in [x] *)
- Variables y z : A.
- Hypothesis h1 : Rstar x y.
- Hypothesis h2 : Rstar x z.
+ Variables y z : A.
+ Hypothesis h1 : Rstar x y.
+ Hypothesis h2 : Rstar x z.
-(** particular case [x->u] and [u->*y] *)
-Section Newman_.
- Variable u : A.
- Hypothesis t1 : R x u.
- Hypothesis t2 : Rstar u y.
+ (** particular case [x->u] and [u->*y] *)
+ Section Newman_.
+ Variable u : A.
+ Hypothesis t1 : R x u.
+ Hypothesis t2 : Rstar u y.
+
+ (** In the usual diagram, we assume also [x->v] and [v->*z] *)
+
+ Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
+ Proof
+ (* We draw the diagram ! *)
+ fun (v:A) (u1:R x v) (u2:Rstar v z) =>
+ ex2_ind
+ (* local confluence in x for u,v *)
+ (* gives w, u->*w and v->*w *)
+ (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
+ ex2_ind
+ (* confluence in u => coherence(y,w) *)
+ (* gives a, y->*a and z->*a *)
+ (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
+ ex2_ind
+ (* confluence in v => coherence(a,z) *)
+ (* gives b, a->*b and z->*b *)
+ (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
+ coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
+ (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
+ (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).
-(** In the usual diagram, we assume also [x->v] and [v->*z] *)
-
-Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
-
-Proof
- (* We draw the diagram ! *)
- fun (v:A) (u1:R x v) (u2:Rstar v z) =>
- ex2_ind
- (* local confluence in x for u,v *)
- (* gives w, u->*w and v->*w *)
- (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
- ex2_ind
- (* confluence in u => coherence(y,w) *)
- (* gives a, y->*a and z->*a *)
- (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
- ex2_ind
- (* confluence in v => coherence(a,z) *)
- (* gives b, a->*b and z->*b *)
- (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
- coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
- (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
- (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).
-
-Theorem caseRxy : coherence y z.
-Proof
- Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
- (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
- Diagram. (*i case x->v->*z i*)
-End Newman_.
-
-Theorem Ind_proof : coherence y z.
-Proof
- Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
- (Rstar_coherence x z h2) (*i case x=y i*)
- caseRxy. (*i case x->u->*z i*)
-End Induct.
-
-Theorem Newman : forall x:A, confluence x.
-Proof fun x:A => Hyp1 x confluence Ind_proof.
+ Theorem caseRxy : coherence y z.
+ Proof
+ Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
+ (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
+ Diagram. (*i case x->v->*z i*)
+ End Newman_.
+
+ Theorem Ind_proof : coherence y z.
+ Proof
+ Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
+ (Rstar_coherence x z h2) (*i case x=y i*)
+ caseRxy. (*i case x->u->*z i*)
+ End Induct.
+
+ Theorem Newman : forall x:A, confluence x.
+ Proof fun x:A => Hyp1 x confluence Ind_proof.
End Newman_section.