diff options
Diffstat (limited to 'theories/Reals')
-rw-r--r-- | theories/Reals/Alembert.v | 1 | ||||
-rw-r--r-- | theories/Reals/Cos_rel.v | 7 | ||||
-rw-r--r-- | theories/Reals/PSeries_reg.v | 6 | ||||
-rw-r--r-- | theories/Reals/Ratan.v | 10 |
4 files changed, 23 insertions, 1 deletions
diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v index e848e4df..011328ec 100644 --- a/theories/Reals/Alembert.v +++ b/theories/Reals/Alembert.v @@ -572,6 +572,7 @@ Lemma Alembert_C6 : (forall n:nat, An n <> 0) -> Un_cv (fun n:nat => Rabs (An (S n) / An n)) k -> Rabs x < / k -> { l:R | Pser An x l }. +Proof. intros. cut { l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l }. intro X. diff --git a/theories/Reals/Cos_rel.v b/theories/Reals/Cos_rel.v index f5b34de9..6d30319c 100644 --- a/theories/Reals/Cos_rel.v +++ b/theories/Reals/Cos_rel.v @@ -10,7 +10,7 @@ Require Import Rbase. Require Import Rfunctions. Require Import SeqSeries. Require Import Rtrigo_def. -Require Import Omega. +Require Import OmegaTactic. Local Open Scope R_scope. Definition A1 (x:R) (N:nat) : R := @@ -50,6 +50,7 @@ Theorem cos_plus_form : forall (x y:R) (n:nat), (0 < n)%nat -> A1 x (S n) * A1 y (S n) - B1 x n * B1 y n + Reste x y n = C1 x y (S n). +Proof. intros. unfold A1, B1. rewrite @@ -251,12 +252,14 @@ apply lt_O_Sn. Qed. Lemma pow_sqr : forall (x:R) (i:nat), x ^ (2 * i) = (x * x) ^ i. +Proof. intros. assert (H := pow_Rsqr x i). unfold Rsqr in H; exact H. Qed. Lemma A1_cvg : forall x:R, Un_cv (A1 x) (cos x). +Proof. intro. unfold cos; destruct (exist_cos (Rsqr x)) as (x0,p). unfold cos_in, cos_n, infinite_sum, R_dist in p. @@ -276,6 +279,7 @@ apply pow_sqr. Qed. Lemma C1_cvg : forall x y:R, Un_cv (C1 x y) (cos (x + y)). +Proof. intros. unfold cos. destruct (exist_cos (Rsqr (x + y))) as (x0,p). @@ -298,6 +302,7 @@ apply pow_sqr. Qed. Lemma B1_cvg : forall x:R, Un_cv (B1 x) (sin x). +Proof. intro. case (Req_dec x 0); intro. rewrite H. diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v index 30a26f77..94b881cc 100644 --- a/theories/Reals/PSeries_reg.v +++ b/theories/Reals/PSeries_reg.v @@ -24,6 +24,7 @@ Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r. Lemma Boule_convex : forall c d x y z, Boule c d x -> Boule c d y -> x <= z <= y -> Boule c d z. +Proof. intros c d x y z bx b_y intz. unfold Boule in bx, b_y; apply Rabs_def2 in bx; apply Rabs_def2 in b_y; apply Rabs_def1; @@ -33,6 +34,7 @@ Qed. Definition boule_of_interval x y (h : x < y) : {c :R & {r : posreal | c - r = x /\ c + r = y}}. +Proof. exists ((x + y)/2). assert (radius : 0 < (y - x)/2). unfold Rdiv; apply Rmult_lt_0_compat. @@ -71,6 +73,7 @@ Qed. Lemma Ball_in_inter : forall c1 c2 r1 r2 x, Boule c1 r1 x -> Boule c2 r2 x -> {r3 : posreal | forall y, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}. +Proof. intros c1 c2 [r1 r1p] [r2 r2p] x; unfold Boule; simpl; intros in1 in2. assert (Rmax (c1 - r1)(c2 - r2) < x). apply Rmax_lub_lt;[revert in1 | revert in2]; intros h; @@ -366,6 +369,7 @@ Qed. (* Uniform convergence implies pointwise simple convergence *) Lemma CVU_cv : forall f g c d, CVU f g c d -> forall x, Boule c d x -> Un_cv (fun n => f n x) (g x). +Proof. intros f g c d cvu x bx eps ep; destruct (cvu eps ep) as [N Pn]. exists N; intros n nN; rewrite R_dist_sym; apply Pn; assumption. Qed. @@ -374,6 +378,7 @@ Qed. Lemma CVU_ext_lim : forall f g1 g2 c d, CVU f g1 c d -> (forall x, Boule c d x -> g1 x = g2 x) -> CVU f g2 c d. +Proof. intros f g1 g2 c d cvu q eps ep; destruct (cvu _ ep) as [N Pn]. exists N; intros; rewrite <- q; auto. Qed. @@ -388,6 +393,7 @@ Lemma CVU_derivable : (forall x, Boule c d x -> Un_cv (fun n => f n x) (g x)) -> (forall n x, Boule c d x -> derivable_pt_lim (f n) x (f' n x)) -> forall x, Boule c d x -> derivable_pt_lim g x (g' x). +Proof. intros f f' g g' c d cvu cvp dff' x bx. set (rho_ := fun n y => diff --git a/theories/Reals/Ratan.v b/theories/Reals/Ratan.v index 68718db0..cc45139d 100644 --- a/theories/Reals/Ratan.v +++ b/theories/Reals/Ratan.v @@ -450,6 +450,7 @@ fourier. Qed. Definition frame_tan y : {x | 0 < x < PI/2 /\ Rabs y < tan x}. +Proof. destruct (total_order_T (Rabs y) 1) as [Hs|Hgt]. assert (yle1 : Rabs y <= 1) by (destruct Hs; fourier). clear Hs; exists 1; split;[split; [exact Rlt_0_1 | exact PI2_1] | ]. @@ -567,10 +568,12 @@ Lemma pos_opp_lt : forall x, 0 < x -> -x < x. Proof. intros; fourier. Qed. Lemma tech_opp_tan : forall x y, -tan x < y -> tan (-x) < y. +Proof. intros; rewrite tan_neg; assumption. Qed. Definition pre_atan (y : R) : {x : R | -PI/2 < x < PI/2 /\ tan x = y}. +Proof. destruct (frame_tan y) as [ub [[ub0 ubpi2] Ptan_ub]]. set (pr := (conj (tech_opp_tan _ _ (proj2 (Rabs_def2 _ _ Ptan_ub))) (proj1 (Rabs_def2 _ _ Ptan_ub)))). @@ -649,6 +652,7 @@ exact df_neq. Qed. Lemma atan_increasing : forall x y, x < y -> atan x < atan y. +Proof. intros x y d. assert (t1 := atan_bound x). assert (t2 := atan_bound y). @@ -663,6 +667,7 @@ solve[rewrite yx; apply Rle_refl]. Qed. Lemma atan_0 : atan 0 = 0. +Proof. apply tan_is_inj; try (apply atan_bound). assert (t := PI_RGT_0); rewrite Ropp_div; split; fourier. rewrite atan_right_inv, tan_0. @@ -670,6 +675,7 @@ reflexivity. Qed. Lemma atan_1 : atan 1 = PI/4. +Proof. assert (ut := PI_RGT_0). assert (-PI/2 < PI/4 < PI/2) by (rewrite Ropp_div; split; fourier). assert (t := atan_bound 1). @@ -865,6 +871,7 @@ Qed. Definition ps_atan_exists_01 (x : R) (Hx:0 <= x <= 1) : {l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}. +Proof. exact (alternated_series (Ratan_seq x) (Ratan_seq_decreasing _ Hx) (Ratan_seq_converging _ Hx)). Defined. @@ -888,6 +895,7 @@ Qed. Definition ps_atan_exists_1 (x : R) (Hx : -1 <= x <= 1) : {l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}. +Proof. destruct (Rle_lt_dec 0 x). assert (pr : 0 <= x <= 1) by tauto. exact (ps_atan_exists_01 x pr). @@ -902,6 +910,7 @@ solve[intros; exists 0%nat; intros; rewrite R_dist_eq; auto]. Qed. Definition in_int (x : R) : {-1 <= x <= 1}+{~ -1 <= x <= 1}. +Proof. destruct (Rle_lt_dec x 1). destruct (Rle_lt_dec (-1) x). left;split; auto. @@ -1563,6 +1572,7 @@ Qed. Theorem Alt_PI_eq : Alt_PI = PI. +Proof. apply Rmult_eq_reg_r with (/4); fold (Alt_PI/4); fold (PI/4); [ | apply Rgt_not_eq; fourier]. assert (0 < PI/6) by (apply PI6_RGT_0). |