summaryrefslogtreecommitdiff
path: root/theories/Reals/Sqrt_reg.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Sqrt_reg.v')
-rw-r--r--theories/Reals/Sqrt_reg.v351
1 files changed, 351 insertions, 0 deletions
diff --git a/theories/Reals/Sqrt_reg.v b/theories/Reals/Sqrt_reg.v
new file mode 100644
index 00000000..b11e51f0
--- /dev/null
+++ b/theories/Reals/Sqrt_reg.v
@@ -0,0 +1,351 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Sqrt_reg.v,v 1.9.2.1 2004/07/16 19:31:15 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import Ranalysis1.
+Require Import R_sqrt. Open Local Scope R_scope.
+
+(**********)
+Lemma sqrt_var_maj :
+ forall h:R, Rabs h <= 1 -> Rabs (sqrt (1 + h) - 1) <= Rabs h.
+intros; cut (0 <= 1 + h).
+intro; apply Rle_trans with (Rabs (sqrt (Rsqr (1 + h)) - 1)).
+case (total_order_T h 0); intro.
+elim s; intro.
+repeat rewrite Rabs_left.
+unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (-1)).
+do 2 rewrite Ropp_plus_distr; rewrite Ropp_involutive;
+ apply Rplus_le_compat_l.
+apply Ropp_le_contravar; apply sqrt_le_1.
+apply Rle_0_sqr.
+apply H0.
+pattern (1 + h) at 2 in |- *; rewrite <- Rmult_1_r; unfold Rsqr in |- *;
+ apply Rmult_le_compat_l.
+apply H0.
+pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ assumption.
+apply Rplus_lt_reg_r with 1; rewrite Rplus_0_r; rewrite Rplus_comm;
+ unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
+ rewrite Rplus_0_r.
+pattern 1 at 2 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
+apply Rle_0_sqr.
+left; apply Rlt_0_1.
+pattern 1 at 2 in |- *; rewrite <- Rsqr_1; apply Rsqr_incrst_1.
+pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ assumption.
+apply H0.
+left; apply Rlt_0_1.
+apply Rplus_lt_reg_r with 1; rewrite Rplus_0_r; rewrite Rplus_comm;
+ unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
+ rewrite Rplus_0_r.
+pattern 1 at 2 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
+apply H0.
+left; apply Rlt_0_1.
+pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ assumption.
+rewrite b; rewrite Rplus_0_r; rewrite Rsqr_1; rewrite sqrt_1; right;
+ reflexivity.
+repeat rewrite Rabs_right.
+unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (-1));
+ apply Rplus_le_compat_l.
+apply sqrt_le_1.
+apply H0.
+apply Rle_0_sqr.
+pattern (1 + h) at 1 in |- *; rewrite <- Rmult_1_r; unfold Rsqr in |- *;
+ apply Rmult_le_compat_l.
+apply H0.
+pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ assumption.
+apply Rle_ge; apply Rplus_le_reg_l with 1.
+rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
+ rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
+pattern 1 at 1 in |- *; rewrite <- sqrt_1; apply sqrt_le_1.
+left; apply Rlt_0_1.
+apply Rle_0_sqr.
+pattern 1 at 1 in |- *; rewrite <- Rsqr_1; apply Rsqr_incr_1.
+pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ assumption.
+left; apply Rlt_0_1.
+apply H0.
+apply Rle_ge; left; apply Rplus_lt_reg_r with 1.
+rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
+ rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
+pattern 1 at 1 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
+left; apply Rlt_0_1.
+apply H0.
+pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ assumption.
+rewrite sqrt_Rsqr.
+replace (1 + h - 1) with h; [ right; reflexivity | ring ].
+apply H0.
+case (total_order_T h 0); intro.
+elim s; intro.
+rewrite (Rabs_left h a) in H.
+apply Rplus_le_reg_l with (- h).
+rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
+ rewrite Rplus_opp_r; rewrite Rplus_0_r; exact H.
+left; rewrite b; rewrite Rplus_0_r; apply Rlt_0_1.
+left; apply Rplus_lt_0_compat.
+apply Rlt_0_1.
+apply r.
+Qed.
+
+(* sqrt is continuous in 1 *)
+Lemma sqrt_continuity_pt_R1 : continuity_pt sqrt 1.
+unfold continuity_pt in |- *; unfold continue_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ intros.
+set (alpha := Rmin eps 1).
+exists alpha; intros.
+split.
+unfold alpha in |- *; unfold Rmin in |- *; case (Rle_dec eps 1); intro.
+assumption.
+apply Rlt_0_1.
+intros; elim H0; intros.
+rewrite sqrt_1; replace x with (1 + (x - 1)); [ idtac | ring ];
+ apply Rle_lt_trans with (Rabs (x - 1)).
+apply sqrt_var_maj.
+apply Rle_trans with alpha.
+left; apply H2.
+unfold alpha in |- *; apply Rmin_r.
+apply Rlt_le_trans with alpha;
+ [ apply H2 | unfold alpha in |- *; apply Rmin_l ].
+Qed.
+
+(* sqrt is continuous forall x>0 *)
+Lemma sqrt_continuity_pt : forall x:R, 0 < x -> continuity_pt sqrt x.
+intros; generalize sqrt_continuity_pt_R1.
+unfold continuity_pt in |- *; unfold continue_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ intros.
+cut (0 < eps / sqrt x).
+intro; elim (H0 _ H2); intros alp_1 H3.
+elim H3; intros.
+set (alpha := alp_1 * x).
+exists (Rmin alpha x); intros.
+split.
+change (0 < Rmin alpha x) in |- *; unfold Rmin in |- *;
+ case (Rle_dec alpha x); intro.
+unfold alpha in |- *; apply Rmult_lt_0_compat; assumption.
+apply H.
+intros; replace x0 with (x + (x0 - x)); [ idtac | ring ];
+ replace (sqrt (x + (x0 - x)) - sqrt x) with
+ (sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1)).
+rewrite Rabs_mult; rewrite (Rabs_right (sqrt x)).
+apply Rmult_lt_reg_l with (/ sqrt x).
+apply Rinv_0_lt_compat; apply sqrt_lt_R0; assumption.
+rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l; rewrite Rmult_comm.
+unfold Rdiv in H5.
+case (Req_dec x x0); intro.
+rewrite H7; unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r;
+ rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r;
+ rewrite Rabs_R0.
+apply Rmult_lt_0_compat.
+assumption.
+apply Rinv_0_lt_compat; rewrite <- H7; apply sqrt_lt_R0; assumption.
+apply H5.
+split.
+unfold D_x, no_cond in |- *.
+split.
+trivial.
+red in |- *; intro.
+cut ((x0 - x) * / x = 0).
+intro.
+elim (Rmult_integral _ _ H9); intro.
+elim H7.
+apply (Rminus_diag_uniq_sym _ _ H10).
+assert (H11 := Rmult_eq_0_compat_r _ x H10).
+rewrite <- Rinv_l_sym in H11.
+elim R1_neq_R0; exact H11.
+red in |- *; intro; rewrite H12 in H; elim (Rlt_irrefl _ H).
+symmetry in |- *; apply Rplus_eq_reg_l with 1; rewrite Rplus_0_r;
+ unfold Rdiv in H8; exact H8.
+unfold Rminus in |- *; rewrite Rplus_comm; rewrite <- Rplus_assoc;
+ rewrite Rplus_opp_l; rewrite Rplus_0_l; elim H6; intros.
+unfold Rdiv in |- *; rewrite Rabs_mult.
+rewrite Rabs_Rinv.
+rewrite (Rabs_right x).
+rewrite Rmult_comm; apply Rmult_lt_reg_l with x.
+apply H.
+rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
+rewrite Rmult_1_l; rewrite Rmult_comm; fold alpha in |- *.
+apply Rlt_le_trans with (Rmin alpha x).
+apply H9.
+apply Rmin_l.
+red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
+apply Rle_ge; left; apply H.
+red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
+assert (H7 := sqrt_lt_R0 x H).
+red in |- *; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7).
+apply Rle_ge; apply sqrt_positivity.
+left; apply H.
+unfold Rminus in |- *; rewrite Rmult_plus_distr_l;
+ rewrite Ropp_mult_distr_r_reverse; repeat rewrite <- sqrt_mult.
+rewrite Rmult_1_r; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
+ unfold Rdiv in |- *; rewrite Rmult_comm; rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r; reflexivity.
+red in |- *; intro; rewrite H7 in H; elim (Rlt_irrefl _ H).
+left; apply H.
+left; apply Rlt_0_1.
+left; apply H.
+elim H6; intros.
+case (Rcase_abs (x0 - x)); intro.
+rewrite (Rabs_left (x0 - x) r) in H8.
+rewrite Rplus_comm.
+apply Rplus_le_reg_l with (- ((x0 - x) / x)).
+rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
+ rewrite Rplus_0_l; unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse.
+apply Rmult_le_reg_l with x.
+apply H.
+rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r; left; apply Rlt_le_trans with (Rmin alpha x).
+apply H8.
+apply Rmin_r.
+red in |- *; intro; rewrite H9 in H; elim (Rlt_irrefl _ H).
+apply Rplus_le_le_0_compat.
+left; apply Rlt_0_1.
+unfold Rdiv in |- *; apply Rmult_le_pos.
+apply Rge_le; exact r.
+left; apply Rinv_0_lt_compat; apply H.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+apply H1.
+apply Rinv_0_lt_compat; apply sqrt_lt_R0; apply H.
+Qed.
+
+(* sqrt is derivable for all x>0 *)
+Lemma derivable_pt_lim_sqrt :
+ forall x:R, 0 < x -> derivable_pt_lim sqrt x (/ (2 * sqrt x)).
+intros; set (g := fun h:R => sqrt x + sqrt (x + h)).
+cut (continuity_pt g 0).
+intro; cut (g 0 <> 0).
+intro; assert (H2 := continuity_pt_inv g 0 H0 H1).
+unfold derivable_pt_lim in |- *; intros; unfold continuity_pt in H2;
+ unfold continue_in in H2; unfold limit1_in in H2;
+ unfold limit_in in H2; simpl in H2; unfold R_dist in H2.
+elim (H2 eps H3); intros alpha H4.
+elim H4; intros.
+set (alpha1 := Rmin alpha x).
+cut (0 < alpha1).
+intro; exists (mkposreal alpha1 H7); intros.
+replace ((sqrt (x + h) - sqrt x) / h) with (/ (sqrt x + sqrt (x + h))).
+unfold inv_fct, g in H6; replace (2 * sqrt x) with (sqrt x + sqrt (x + 0)).
+apply H6.
+split.
+unfold D_x, no_cond in |- *.
+split.
+trivial.
+apply (sym_not_eq (A:=R)); exact H8.
+unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
+ apply Rlt_le_trans with alpha1.
+exact H9.
+unfold alpha1 in |- *; apply Rmin_l.
+rewrite Rplus_0_r; ring.
+cut (0 <= x + h).
+intro; cut (0 < sqrt x + sqrt (x + h)).
+intro; apply Rmult_eq_reg_l with (sqrt x + sqrt (x + h)).
+rewrite <- Rinv_r_sym.
+rewrite Rplus_comm; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
+ rewrite Rsqr_plus_minus; repeat rewrite Rsqr_sqrt.
+rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc;
+ rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym.
+reflexivity.
+apply H8.
+left; apply H.
+assumption.
+red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
+red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
+apply Rplus_lt_le_0_compat.
+apply sqrt_lt_R0; apply H.
+apply sqrt_positivity; apply H10.
+case (Rcase_abs h); intro.
+rewrite (Rabs_left h r) in H9.
+apply Rplus_le_reg_l with (- h).
+rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
+ rewrite Rplus_opp_r; rewrite Rplus_0_r; left; apply Rlt_le_trans with alpha1.
+apply H9.
+unfold alpha1 in |- *; apply Rmin_r.
+apply Rplus_le_le_0_compat.
+left; assumption.
+apply Rge_le; apply r.
+unfold alpha1 in |- *; unfold Rmin in |- *; case (Rle_dec alpha x); intro.
+apply H5.
+apply H.
+unfold g in |- *; rewrite Rplus_0_r.
+cut (0 < sqrt x + sqrt x).
+intro; red in |- *; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
+apply Rplus_lt_0_compat; apply sqrt_lt_R0; apply H.
+replace g with (fct_cte (sqrt x) + comp sqrt (fct_cte x + id))%F;
+ [ idtac | reflexivity ].
+apply continuity_pt_plus.
+apply continuity_pt_const; unfold constant, fct_cte in |- *; intro;
+ reflexivity.
+apply continuity_pt_comp.
+apply continuity_pt_plus.
+apply continuity_pt_const; unfold constant, fct_cte in |- *; intro;
+ reflexivity.
+apply derivable_continuous_pt; apply derivable_pt_id.
+apply sqrt_continuity_pt.
+unfold plus_fct, fct_cte, id in |- *; rewrite Rplus_0_r; apply H.
+Qed.
+
+(**********)
+Lemma derivable_pt_sqrt : forall x:R, 0 < x -> derivable_pt sqrt x.
+unfold derivable_pt in |- *; intros.
+apply existT with (/ (2 * sqrt x)).
+apply derivable_pt_lim_sqrt; assumption.
+Qed.
+
+(**********)
+Lemma derive_pt_sqrt :
+ forall (x:R) (pr:0 < x),
+ derive_pt sqrt x (derivable_pt_sqrt _ pr) = / (2 * sqrt x).
+intros.
+apply derive_pt_eq_0.
+apply derivable_pt_lim_sqrt; assumption.
+Qed.
+
+(* We show that sqrt is continuous for all x>=0 *)
+(* Remark : by definition of sqrt (as extension of Rsqrt on |R), *)
+(* we could also show that sqrt is continuous for all x *)
+Lemma continuity_pt_sqrt : forall x:R, 0 <= x -> continuity_pt sqrt x.
+intros; case (Rtotal_order 0 x); intro.
+apply (sqrt_continuity_pt x H0).
+elim H0; intro.
+unfold continuity_pt in |- *; unfold continue_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold R_dist in |- *; intros.
+exists (Rsqr eps); intros.
+split.
+change (0 < Rsqr eps) in |- *; apply Rsqr_pos_lt.
+red in |- *; intro; rewrite H3 in H2; elim (Rlt_irrefl _ H2).
+intros; elim H3; intros.
+rewrite <- H1; rewrite sqrt_0; unfold Rminus in |- *; rewrite Ropp_0;
+ rewrite Rplus_0_r; rewrite <- H1 in H5; unfold Rminus in H5;
+ rewrite Ropp_0 in H5; rewrite Rplus_0_r in H5.
+case (Rcase_abs x0); intro.
+unfold sqrt in |- *; case (Rcase_abs x0); intro.
+rewrite Rabs_R0; apply H2.
+assert (H6 := Rge_le _ _ r0); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 r)).
+rewrite Rabs_right.
+apply Rsqr_incrst_0.
+rewrite Rsqr_sqrt.
+rewrite (Rabs_right x0 r) in H5; apply H5.
+apply Rge_le; exact r.
+apply sqrt_positivity; apply Rge_le; exact r.
+left; exact H2.
+apply Rle_ge; apply sqrt_positivity; apply Rge_le; exact r.
+elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H1 H)).
+Qed. \ No newline at end of file