diff options
Diffstat (limited to 'theories/Reals/Sqrt_reg.v')
-rw-r--r-- | theories/Reals/Sqrt_reg.v | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/theories/Reals/Sqrt_reg.v b/theories/Reals/Sqrt_reg.v index 13be46da..4f336648 100644 --- a/theories/Reals/Sqrt_reg.v +++ b/theories/Reals/Sqrt_reg.v @@ -6,12 +6,12 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Sqrt_reg.v 10710 2008-03-23 09:24:09Z herbelin $ i*) +(*i $Id$ i*) Require Import Rbase. Require Import Rfunctions. Require Import Ranalysis1. -Require Import R_sqrt. +Require Import R_sqrt. Open Local Scope R_scope. (**********) @@ -104,8 +104,8 @@ Qed. Lemma sqrt_continuity_pt_R1 : continuity_pt sqrt 1. Proof. unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; + unfold limit1_in in |- *; unfold limit_in in |- *; + unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; intros. set (alpha := Rmin eps 1). exists alpha; intros. @@ -129,8 +129,8 @@ Lemma sqrt_continuity_pt : forall x:R, 0 < x -> continuity_pt sqrt x. Proof. intros; generalize sqrt_continuity_pt_R1. unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; + unfold limit1_in in |- *; unfold limit_in in |- *; + unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; intros. cut (0 < eps / sqrt x). intro; elim (H0 _ H2); intros alp_1 H3. @@ -153,7 +153,7 @@ Proof. unfold Rdiv in H5. case (Req_dec x x0); intro. rewrite H7; unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r; - rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r; + rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r; rewrite Rabs_R0. apply Rmult_lt_0_compat. assumption. @@ -238,7 +238,7 @@ Proof. intro; cut (g 0 <> 0). intro; assert (H2 := continuity_pt_inv g 0 H0 H1). unfold derivable_pt_lim in |- *; intros; unfold continuity_pt in H2; - unfold continue_in in H2; unfold limit1_in in H2; + unfold continue_in in H2; unfold limit1_in in H2; unfold limit_in in H2; simpl in H2; unfold R_dist in H2. elim (H2 eps H3); intros alpha H4. elim H4; intros. @@ -333,7 +333,7 @@ Proof. apply (sqrt_continuity_pt x H0). elim H0; intro. unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; + unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; intros. exists (Rsqr eps); intros. split. |