summaryrefslogtreecommitdiff
path: root/theories/Reals/Sqrt_reg.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Sqrt_reg.v')
-rw-r--r--theories/Reals/Sqrt_reg.v18
1 files changed, 9 insertions, 9 deletions
diff --git a/theories/Reals/Sqrt_reg.v b/theories/Reals/Sqrt_reg.v
index 13be46da..4f336648 100644
--- a/theories/Reals/Sqrt_reg.v
+++ b/theories/Reals/Sqrt_reg.v
@@ -6,12 +6,12 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Sqrt_reg.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
-Require Import R_sqrt.
+Require Import R_sqrt.
Open Local Scope R_scope.
(**********)
@@ -104,8 +104,8 @@ Qed.
Lemma sqrt_continuity_pt_R1 : continuity_pt sqrt 1.
Proof.
unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
set (alpha := Rmin eps 1).
exists alpha; intros.
@@ -129,8 +129,8 @@ Lemma sqrt_continuity_pt : forall x:R, 0 < x -> continuity_pt sqrt x.
Proof.
intros; generalize sqrt_continuity_pt_R1.
unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
cut (0 < eps / sqrt x).
intro; elim (H0 _ H2); intros alp_1 H3.
@@ -153,7 +153,7 @@ Proof.
unfold Rdiv in H5.
case (Req_dec x x0); intro.
rewrite H7; unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r;
- rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r;
+ rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r;
rewrite Rabs_R0.
apply Rmult_lt_0_compat.
assumption.
@@ -238,7 +238,7 @@ Proof.
intro; cut (g 0 <> 0).
intro; assert (H2 := continuity_pt_inv g 0 H0 H1).
unfold derivable_pt_lim in |- *; intros; unfold continuity_pt in H2;
- unfold continue_in in H2; unfold limit1_in in H2;
+ unfold continue_in in H2; unfold limit1_in in H2;
unfold limit_in in H2; simpl in H2; unfold R_dist in H2.
elim (H2 eps H3); intros alpha H4.
elim H4; intros.
@@ -333,7 +333,7 @@ Proof.
apply (sqrt_continuity_pt x H0).
elim H0; intro.
unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
simpl in |- *; unfold R_dist in |- *; intros.
exists (Rsqr eps); intros.
split.