summaryrefslogtreecommitdiff
path: root/theories/Reals/SeqSeries.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/SeqSeries.v')
-rw-r--r--theories/Reals/SeqSeries.v417
1 files changed, 417 insertions, 0 deletions
diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v
new file mode 100644
index 00000000..deb98492
--- /dev/null
+++ b/theories/Reals/SeqSeries.v
@@ -0,0 +1,417 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: SeqSeries.v,v 1.14.2.1 2004/07/16 19:31:15 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import Max.
+Require Export Rseries.
+Require Export SeqProp.
+Require Export Rcomplete.
+Require Export PartSum.
+Require Export AltSeries.
+Require Export Binomial.
+Require Export Rsigma.
+Require Export Rprod.
+Require Export Cauchy_prod.
+Require Export Alembert.
+Open Local Scope R_scope.
+
+(**********)
+Lemma sum_maj1 :
+ forall (fn:nat -> R -> R) (An:nat -> R) (x l1 l2:R)
+ (N:nat),
+ Un_cv (fun n:nat => SP fn n x) l1 ->
+ Un_cv (fun n:nat => sum_f_R0 An n) l2 ->
+ (forall n:nat, Rabs (fn n x) <= An n) ->
+ Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N.
+intros;
+ cut
+ (sigT
+ (fun l:R =>
+ Un_cv (fun n:nat => sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) l)).
+intro;
+ cut
+ (sigT
+ (fun l:R =>
+ Un_cv (fun n:nat => sum_f_R0 (fun l:nat => An (S N + l)%nat) n) l)).
+intro; elim X; intros l1N H2.
+elim X0; intros l2N H3.
+cut (l1 - SP fn N x = l1N).
+intro; cut (l2 - sum_f_R0 An N = l2N).
+intro; rewrite H4; rewrite H5.
+apply sum_cv_maj with
+ (fun l:nat => An (S N + l)%nat) (fun (l:nat) (x:R) => fn (S N + l)%nat x) x.
+unfold SP in |- *; apply H2.
+apply H3.
+intros; apply H1.
+symmetry in |- *; eapply UL_sequence.
+apply H3.
+unfold Un_cv in H0; unfold Un_cv in |- *; intros; elim (H0 eps H5);
+ intros N0 H6.
+unfold R_dist in H6; exists N0; intros.
+unfold R_dist in |- *;
+ replace (sum_f_R0 (fun l:nat => An (S N + l)%nat) n - (l2 - sum_f_R0 An N))
+ with (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n - l2);
+ [ idtac | ring ].
+replace (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n) with
+ (sum_f_R0 An (S (N + n))).
+apply H6; unfold ge in |- *; apply le_trans with n.
+apply H7.
+apply le_trans with (N + n)%nat.
+apply le_plus_r.
+apply le_n_Sn.
+cut (0 <= N)%nat.
+cut (N < S (N + n))%nat.
+intros; assert (H10 := sigma_split An H9 H8).
+unfold sigma in H10.
+do 2 rewrite <- minus_n_O in H10.
+replace (sum_f_R0 An (S (N + n))) with
+ (sum_f_R0 (fun k:nat => An (0 + k)%nat) (S (N + n))).
+replace (sum_f_R0 An N) with (sum_f_R0 (fun k:nat => An (0 + k)%nat) N).
+cut ((S (N + n) - S N)%nat = n).
+intro; rewrite H11 in H10.
+apply H10.
+apply INR_eq; rewrite minus_INR.
+do 2 rewrite S_INR; rewrite plus_INR; ring.
+apply le_n_S; apply le_plus_l.
+apply sum_eq; intros.
+reflexivity.
+apply sum_eq; intros.
+reflexivity.
+apply le_lt_n_Sm; apply le_plus_l.
+apply le_O_n.
+symmetry in |- *; eapply UL_sequence.
+apply H2.
+unfold Un_cv in H; unfold Un_cv in |- *; intros.
+elim (H eps H4); intros N0 H5.
+unfold R_dist in H5; exists N0; intros.
+unfold R_dist, SP in |- *;
+ replace
+ (sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n -
+ (l1 - sum_f_R0 (fun k:nat => fn k x) N)) with
+ (sum_f_R0 (fun k:nat => fn k x) N +
+ sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n - l1);
+ [ idtac | ring ].
+replace
+ (sum_f_R0 (fun k:nat => fn k x) N +
+ sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) with
+ (sum_f_R0 (fun k:nat => fn k x) (S (N + n))).
+unfold SP in H5; apply H5; unfold ge in |- *; apply le_trans with n.
+apply H6.
+apply le_trans with (N + n)%nat.
+apply le_plus_r.
+apply le_n_Sn.
+cut (0 <= N)%nat.
+cut (N < S (N + n))%nat.
+intros; assert (H9 := sigma_split (fun k:nat => fn k x) H8 H7).
+unfold sigma in H9.
+do 2 rewrite <- minus_n_O in H9.
+replace (sum_f_R0 (fun k:nat => fn k x) (S (N + n))) with
+ (sum_f_R0 (fun k:nat => fn (0 + k)%nat x) (S (N + n))).
+replace (sum_f_R0 (fun k:nat => fn k x) N) with
+ (sum_f_R0 (fun k:nat => fn (0 + k)%nat x) N).
+cut ((S (N + n) - S N)%nat = n).
+intro; rewrite H10 in H9.
+apply H9.
+apply INR_eq; rewrite minus_INR.
+do 2 rewrite S_INR; rewrite plus_INR; ring.
+apply le_n_S; apply le_plus_l.
+apply sum_eq; intros.
+reflexivity.
+apply sum_eq; intros.
+reflexivity.
+apply le_lt_n_Sm.
+apply le_plus_l.
+apply le_O_n.
+apply existT with (l2 - sum_f_R0 An N).
+unfold Un_cv in H0; unfold Un_cv in |- *; intros.
+elim (H0 eps H2); intros N0 H3.
+unfold R_dist in H3; exists N0; intros.
+unfold R_dist in |- *;
+ replace (sum_f_R0 (fun l:nat => An (S N + l)%nat) n - (l2 - sum_f_R0 An N))
+ with (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n - l2);
+ [ idtac | ring ].
+replace (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n) with
+ (sum_f_R0 An (S (N + n))).
+apply H3; unfold ge in |- *; apply le_trans with n.
+apply H4.
+apply le_trans with (N + n)%nat.
+apply le_plus_r.
+apply le_n_Sn.
+cut (0 <= N)%nat.
+cut (N < S (N + n))%nat.
+intros; assert (H7 := sigma_split An H6 H5).
+unfold sigma in H7.
+do 2 rewrite <- minus_n_O in H7.
+replace (sum_f_R0 An (S (N + n))) with
+ (sum_f_R0 (fun k:nat => An (0 + k)%nat) (S (N + n))).
+replace (sum_f_R0 An N) with (sum_f_R0 (fun k:nat => An (0 + k)%nat) N).
+cut ((S (N + n) - S N)%nat = n).
+intro; rewrite H8 in H7.
+apply H7.
+apply INR_eq; rewrite minus_INR.
+do 2 rewrite S_INR; rewrite plus_INR; ring.
+apply le_n_S; apply le_plus_l.
+apply sum_eq; intros.
+reflexivity.
+apply sum_eq; intros.
+reflexivity.
+apply le_lt_n_Sm.
+apply le_plus_l.
+apply le_O_n.
+apply existT with (l1 - SP fn N x).
+unfold Un_cv in H; unfold Un_cv in |- *; intros.
+elim (H eps H2); intros N0 H3.
+unfold R_dist in H3; exists N0; intros.
+unfold R_dist, SP in |- *.
+replace
+ (sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n -
+ (l1 - sum_f_R0 (fun k:nat => fn k x) N)) with
+ (sum_f_R0 (fun k:nat => fn k x) N +
+ sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n - l1);
+ [ idtac | ring ].
+replace
+ (sum_f_R0 (fun k:nat => fn k x) N +
+ sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) with
+ (sum_f_R0 (fun k:nat => fn k x) (S (N + n))).
+unfold SP in H3; apply H3.
+unfold ge in |- *; apply le_trans with n.
+apply H4.
+apply le_trans with (N + n)%nat.
+apply le_plus_r.
+apply le_n_Sn.
+cut (0 <= N)%nat.
+cut (N < S (N + n))%nat.
+intros; assert (H7 := sigma_split (fun k:nat => fn k x) H6 H5).
+unfold sigma in H7.
+do 2 rewrite <- minus_n_O in H7.
+replace (sum_f_R0 (fun k:nat => fn k x) (S (N + n))) with
+ (sum_f_R0 (fun k:nat => fn (0 + k)%nat x) (S (N + n))).
+replace (sum_f_R0 (fun k:nat => fn k x) N) with
+ (sum_f_R0 (fun k:nat => fn (0 + k)%nat x) N).
+cut ((S (N + n) - S N)%nat = n).
+intro; rewrite H8 in H7.
+apply H7.
+apply INR_eq; rewrite minus_INR.
+do 2 rewrite S_INR; rewrite plus_INR; ring.
+apply le_n_S; apply le_plus_l.
+apply sum_eq; intros.
+reflexivity.
+apply sum_eq; intros.
+reflexivity.
+apply le_lt_n_Sm.
+apply le_plus_l.
+apply le_O_n.
+Qed.
+
+(* Comparaison of convergence for series *)
+Lemma Rseries_CV_comp :
+ forall An Bn:nat -> R,
+ (forall n:nat, 0 <= An n <= Bn n) ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 Bn N) l) ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+intros; apply cv_cauchy_2.
+assert (H0 := cv_cauchy_1 _ X).
+unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
+intros; elim (H0 eps H1); intros.
+exists x; intros.
+cut
+ (R_dist (sum_f_R0 An n) (sum_f_R0 An m) <=
+ R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)).
+intro; apply Rle_lt_trans with (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)).
+assumption.
+apply H2; assumption.
+assert (H5 := lt_eq_lt_dec n m).
+elim H5; intro.
+elim a; intro.
+rewrite (tech2 An n m); [ idtac | assumption ].
+rewrite (tech2 Bn n m); [ idtac | assumption ].
+unfold R_dist in |- *; unfold Rminus in |- *; do 2 rewrite Ropp_plus_distr;
+ do 2 rewrite <- Rplus_assoc; do 2 rewrite Rplus_opp_r;
+ do 2 rewrite Rplus_0_l; do 2 rewrite Rabs_Ropp; repeat rewrite Rabs_right.
+apply sum_Rle; intros.
+elim (H (S n + n0)%nat); intros.
+apply H8.
+apply Rle_ge; apply cond_pos_sum; intro.
+elim (H (S n + n0)%nat); intros.
+apply Rle_trans with (An (S n + n0)%nat); assumption.
+apply Rle_ge; apply cond_pos_sum; intro.
+elim (H (S n + n0)%nat); intros; assumption.
+rewrite b; unfold R_dist in |- *; unfold Rminus in |- *;
+ do 2 rewrite Rplus_opp_r; rewrite Rabs_R0; right;
+ reflexivity.
+rewrite (tech2 An m n); [ idtac | assumption ].
+rewrite (tech2 Bn m n); [ idtac | assumption ].
+unfold R_dist in |- *; unfold Rminus in |- *; do 2 rewrite Rplus_assoc;
+ rewrite (Rplus_comm (sum_f_R0 An m)); rewrite (Rplus_comm (sum_f_R0 Bn m));
+ do 2 rewrite Rplus_assoc; do 2 rewrite Rplus_opp_l;
+ do 2 rewrite Rplus_0_r; repeat rewrite Rabs_right.
+apply sum_Rle; intros.
+elim (H (S m + n0)%nat); intros; apply H8.
+apply Rle_ge; apply cond_pos_sum; intro.
+elim (H (S m + n0)%nat); intros.
+apply Rle_trans with (An (S m + n0)%nat); assumption.
+apply Rle_ge.
+apply cond_pos_sum; intro.
+elim (H (S m + n0)%nat); intros; assumption.
+Qed.
+
+(* Cesaro's theorem *)
+Lemma Cesaro :
+ forall (An Bn:nat -> R) (l:R),
+ Un_cv Bn l ->
+ (forall n:nat, 0 < An n) ->
+ cv_infty (fun n:nat => sum_f_R0 An n) ->
+ Un_cv (fun n:nat => sum_f_R0 (fun k:nat => An k * Bn k) n / sum_f_R0 An n)
+ l.
+Proof with trivial.
+unfold Un_cv in |- *; intros; assert (H3 : forall n:nat, 0 < sum_f_R0 An n)...
+intro; apply tech1...
+assert (H4 : forall n:nat, sum_f_R0 An n <> 0)...
+intro; red in |- *; intro; assert (H5 := H3 n); rewrite H4 in H5;
+ elim (Rlt_irrefl _ H5)...
+assert (H5 := cv_infty_cv_R0 _ H4 H1); assert (H6 : 0 < eps / 2)...
+unfold Rdiv in |- *; apply Rmult_lt_0_compat...
+apply Rinv_0_lt_compat; prove_sup...
+elim (H _ H6); clear H; intros N1 H;
+ set (C := Rabs (sum_f_R0 (fun k:nat => An k * (Bn k - l)) N1));
+ assert
+ (H7 :
+ exists N : nat,
+ (forall n:nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2))...
+case (Req_dec C 0); intro...
+exists 0%nat; intros...
+rewrite H7; unfold Rdiv in |- *; rewrite Rmult_0_l; apply Rmult_lt_0_compat...
+apply Rinv_0_lt_compat; prove_sup...
+assert (H8 : 0 < eps / (2 * Rabs C))...
+unfold Rdiv in |- *; apply Rmult_lt_0_compat...
+apply Rinv_0_lt_compat; apply Rmult_lt_0_compat...
+prove_sup...
+apply Rabs_pos_lt...
+elim (H5 _ H8); intros; exists x; intros; assert (H11 := H9 _ H10);
+ unfold R_dist in H11; unfold Rminus in H11; rewrite Ropp_0 in H11;
+ rewrite Rplus_0_r in H11...
+apply Rle_lt_trans with (Rabs (C / sum_f_R0 An n))...
+apply RRle_abs...
+unfold Rdiv in |- *; rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs C)...
+apply Rinv_0_lt_compat; apply Rabs_pos_lt...
+rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym...
+rewrite Rmult_1_l; replace (/ Rabs C * (eps * / 2)) with (eps / (2 * Rabs C))...
+unfold Rdiv in |- *; rewrite Rinv_mult_distr...
+ring...
+discrR...
+apply Rabs_no_R0...
+apply Rabs_no_R0...
+elim H7; clear H7; intros N2 H7; set (N := max N1 N2); exists (S N); intros;
+ unfold R_dist in |- *;
+ replace (sum_f_R0 (fun k:nat => An k * Bn k) n / sum_f_R0 An n - l) with
+ (sum_f_R0 (fun k:nat => An k * (Bn k - l)) n / sum_f_R0 An n)...
+assert (H9 : (N1 < n)%nat)...
+apply lt_le_trans with (S N)...
+apply le_lt_n_Sm; unfold N in |- *; apply le_max_l...
+rewrite (tech2 (fun k:nat => An k * (Bn k - l)) _ _ H9); unfold Rdiv in |- *;
+ rewrite Rmult_plus_distr_r;
+ apply Rle_lt_trans with
+ (Rabs (sum_f_R0 (fun k:nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) +
+ Rabs
+ (sum_f_R0 (fun i:nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))
+ (n - S N1) / sum_f_R0 An n))...
+apply Rabs_triang...
+rewrite (double_var eps); apply Rplus_lt_compat...
+unfold Rdiv in |- *; rewrite Rabs_mult; fold C in |- *; rewrite Rabs_right...
+apply (H7 n); apply le_trans with (S N)...
+apply le_trans with N; [ unfold N in |- *; apply le_max_r | apply le_n_Sn ]...
+apply Rle_ge; left; apply Rinv_0_lt_compat...
+
+unfold R_dist in H; unfold Rdiv in |- *; rewrite Rabs_mult;
+ rewrite (Rabs_right (/ sum_f_R0 An n))...
+apply Rle_lt_trans with
+ (sum_f_R0 (fun i:nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)))
+ (n - S N1) * / sum_f_R0 An n)...
+do 2 rewrite <- (Rmult_comm (/ sum_f_R0 An n)); apply Rmult_le_compat_l...
+left; apply Rinv_0_lt_compat...
+apply
+ (Rsum_abs (fun i:nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))
+ (n - S N1))...
+apply Rle_lt_trans with
+ (sum_f_R0 (fun i:nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) *
+ / sum_f_R0 An n)...
+do 2 rewrite <- (Rmult_comm (/ sum_f_R0 An n)); apply Rmult_le_compat_l...
+left; apply Rinv_0_lt_compat...
+apply sum_Rle; intros; rewrite Rabs_mult;
+ pattern (An (S N1 + n0)%nat) at 2 in |- *;
+ rewrite <- (Rabs_right (An (S N1 + n0)%nat))...
+apply Rmult_le_compat_l...
+apply Rabs_pos...
+left; apply H; unfold ge in |- *; apply le_trans with (S N1);
+ [ apply le_n_Sn | apply le_plus_l ]...
+apply Rle_ge; left...
+rewrite <- (scal_sum (fun i:nat => An (S N1 + i)%nat) (n - S N1) (eps / 2));
+ unfold Rdiv in |- *; repeat rewrite Rmult_assoc; apply Rmult_lt_compat_l...
+pattern (/ 2) at 2 in |- *; rewrite <- Rmult_1_r; apply Rmult_lt_compat_l...
+apply Rinv_0_lt_compat; prove_sup...
+rewrite Rmult_comm; apply Rmult_lt_reg_l with (sum_f_R0 An n)...
+rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym...
+rewrite Rmult_1_l; rewrite Rmult_1_r; rewrite (tech2 An N1 n)...
+rewrite Rplus_comm;
+ pattern (sum_f_R0 (fun i:nat => An (S N1 + i)%nat) (n - S N1)) at 1 in |- *;
+ rewrite <- Rplus_0_r; apply Rplus_lt_compat_l...
+apply Rle_ge; left; apply Rinv_0_lt_compat...
+replace (sum_f_R0 (fun k:nat => An k * (Bn k - l)) n) with
+ (sum_f_R0 (fun k:nat => An k * Bn k) n +
+ sum_f_R0 (fun k:nat => An k * - l) n)...
+rewrite <- (scal_sum An n (- l)); field...
+rewrite <- plus_sum; apply sum_eq; intros; ring...
+Qed.
+
+Lemma Cesaro_1 :
+ forall (An:nat -> R) (l:R),
+ Un_cv An l -> Un_cv (fun n:nat => sum_f_R0 An (pred n) / INR n) l.
+Proof with trivial.
+intros Bn l H; set (An := fun _:nat => 1)...
+assert (H0 : forall n:nat, 0 < An n)...
+intro; unfold An in |- *; apply Rlt_0_1...
+assert (H1 : forall n:nat, 0 < sum_f_R0 An n)...
+intro; apply tech1...
+assert (H2 : cv_infty (fun n:nat => sum_f_R0 An n))...
+unfold cv_infty in |- *; intro; case (Rle_dec M 0); intro...
+exists 0%nat; intros; apply Rle_lt_trans with 0...
+assert (H2 : 0 < M)...
+auto with real...
+clear n; set (m := up M); elim (archimed M); intros;
+ assert (H5 : (0 <= m)%Z)...
+apply le_IZR; unfold m in |- *; simpl in |- *; left; apply Rlt_trans with M...
+elim (IZN _ H5); intros; exists x; intros; unfold An in |- *; rewrite sum_cte;
+ rewrite Rmult_1_l; apply Rlt_trans with (IZR (up M))...
+apply Rle_lt_trans with (INR x)...
+rewrite INR_IZR_INZ; fold m in |- *; rewrite <- H6; right...
+apply lt_INR; apply le_lt_n_Sm...
+assert (H3 := Cesaro _ _ _ H H0 H2)...
+unfold Un_cv in |- *; unfold Un_cv in H3; intros; elim (H3 _ H4); intros;
+ exists (S x); intros; unfold R_dist in |- *; unfold R_dist in H5;
+ apply Rle_lt_trans with
+ (Rabs
+ (sum_f_R0 (fun k:nat => An k * Bn k) (pred n) / sum_f_R0 An (pred n) - l))...
+right;
+ replace (sum_f_R0 Bn (pred n) / INR n - l) with
+ (sum_f_R0 (fun k:nat => An k * Bn k) (pred n) / sum_f_R0 An (pred n) - l)...
+unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- l));
+ apply Rplus_eq_compat_l...
+unfold An in |- *;
+ replace (sum_f_R0 (fun k:nat => 1 * Bn k) (pred n)) with
+ (sum_f_R0 Bn (pred n))...
+rewrite sum_cte; rewrite Rmult_1_l; replace (S (pred n)) with n...
+apply S_pred with 0%nat; apply lt_le_trans with (S x)...
+apply lt_O_Sn...
+apply sum_eq; intros; ring...
+apply H5; unfold ge in |- *; apply le_S_n; replace (S (pred n)) with n...
+apply S_pred with 0%nat; apply lt_le_trans with (S x)...
+apply lt_O_Sn...
+Qed.