summaryrefslogtreecommitdiff
path: root/theories/Reals/SeqSeries.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/SeqSeries.v')
-rw-r--r--theories/Reals/SeqSeries.v20
1 files changed, 7 insertions, 13 deletions
diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v
index bc17cd43..9680b75e 100644
--- a/theories/Reals/SeqSeries.v
+++ b/theories/Reals/SeqSeries.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: SeqSeries.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: SeqSeries.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -33,15 +33,9 @@ Lemma sum_maj1 :
Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N.
Proof.
intros;
- cut
- (sigT
- (fun l:R =>
- Un_cv (fun n:nat => sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) l)).
+ cut { l:R | Un_cv (fun n => sum_f_R0 (fun l => fn (S N + l)%nat x) n) l }.
intro X;
- cut
- (sigT
- (fun l:R =>
- Un_cv (fun n:nat => sum_f_R0 (fun l:nat => An (S N + l)%nat) n) l)).
+ cut { l:R | Un_cv (fun n => sum_f_R0 (fun l => An (S N + l)%nat) n) l }.
intro X0; elim X; intros l1N H2.
elim X0; intros l2N H3.
cut (l1 - SP fn N x = l1N).
@@ -131,7 +125,7 @@ Proof.
apply le_lt_n_Sm.
apply le_plus_l.
apply le_O_n.
- apply existT with (l2 - sum_f_R0 An N).
+ exists (l2 - sum_f_R0 An N).
unfold Un_cv in H0; unfold Un_cv in |- *; intros.
elim (H0 eps H2); intros N0 H3.
unfold R_dist in H3; exists N0; intros.
@@ -167,7 +161,7 @@ Proof.
apply le_lt_n_Sm.
apply le_plus_l.
apply le_O_n.
- apply existT with (l1 - SP fn N x).
+ exists (l1 - SP fn N x).
unfold Un_cv in H; unfold Un_cv in |- *; intros.
elim (H eps H2); intros N0 H3.
unfold R_dist in H3; exists N0; intros.
@@ -216,8 +210,8 @@ Qed.
Lemma Rseries_CV_comp :
forall An Bn:nat -> R,
(forall n:nat, 0 <= An n <= Bn n) ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 Bn N) l) ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 Bn N) l } ->
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
intros An Bn H X; apply cv_cauchy_2.
assert (H0 := cv_cauchy_1 _ X).