diff options
Diffstat (limited to 'theories/Reals/SeqSeries.v')
-rw-r--r-- | theories/Reals/SeqSeries.v | 20 |
1 files changed, 7 insertions, 13 deletions
diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v index bc17cd43..9680b75e 100644 --- a/theories/Reals/SeqSeries.v +++ b/theories/Reals/SeqSeries.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: SeqSeries.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: SeqSeries.v 10710 2008-03-23 09:24:09Z herbelin $ i*) Require Import Rbase. Require Import Rfunctions. @@ -33,15 +33,9 @@ Lemma sum_maj1 : Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N. Proof. intros; - cut - (sigT - (fun l:R => - Un_cv (fun n:nat => sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) l)). + cut { l:R | Un_cv (fun n => sum_f_R0 (fun l => fn (S N + l)%nat x) n) l }. intro X; - cut - (sigT - (fun l:R => - Un_cv (fun n:nat => sum_f_R0 (fun l:nat => An (S N + l)%nat) n) l)). + cut { l:R | Un_cv (fun n => sum_f_R0 (fun l => An (S N + l)%nat) n) l }. intro X0; elim X; intros l1N H2. elim X0; intros l2N H3. cut (l1 - SP fn N x = l1N). @@ -131,7 +125,7 @@ Proof. apply le_lt_n_Sm. apply le_plus_l. apply le_O_n. - apply existT with (l2 - sum_f_R0 An N). + exists (l2 - sum_f_R0 An N). unfold Un_cv in H0; unfold Un_cv in |- *; intros. elim (H0 eps H2); intros N0 H3. unfold R_dist in H3; exists N0; intros. @@ -167,7 +161,7 @@ Proof. apply le_lt_n_Sm. apply le_plus_l. apply le_O_n. - apply existT with (l1 - SP fn N x). + exists (l1 - SP fn N x). unfold Un_cv in H; unfold Un_cv in |- *; intros. elim (H eps H2); intros N0 H3. unfold R_dist in H3; exists N0; intros. @@ -216,8 +210,8 @@ Qed. Lemma Rseries_CV_comp : forall An Bn:nat -> R, (forall n:nat, 0 <= An n <= Bn n) -> - sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 Bn N) l) -> - sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l). + { l:R | Un_cv (fun N:nat => sum_f_R0 Bn N) l } -> + { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }. Proof. intros An Bn H X; apply cv_cauchy_2. assert (H0 := cv_cauchy_1 _ X). |