summaryrefslogtreecommitdiff
path: root/theories/Reals/SeqProp.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/SeqProp.v')
-rw-r--r--theories/Reals/SeqProp.v317
1 files changed, 93 insertions, 224 deletions
diff --git a/theories/Reals/SeqProp.v b/theories/Reals/SeqProp.v
index 7a1319ea..75c57401 100644
--- a/theories/Reals/SeqProp.v
+++ b/theories/Reals/SeqProp.v
@@ -1,17 +1,14 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: SeqProp.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
-Require Import Classical.
Require Import Max.
Open Local Scope R_scope.
@@ -29,31 +26,10 @@ Definition has_lb (Un:nat -> R) : Prop := bound (EUn (opp_seq Un)).
Lemma growing_cv :
forall Un:nat -> R, Un_growing Un -> has_ub Un -> { l:R | Un_cv Un l }.
Proof.
- unfold Un_growing, Un_cv in |- *; intros;
- destruct (completeness (EUn Un) H0 (EUn_noempty Un)) as [x [H2 H3]].
- exists x; intros eps H1.
- unfold is_upper_bound in H2, H3.
- assert (H5 : forall n:nat, Un n <= x).
- intro n; apply (H2 (Un n) (Un_in_EUn Un n)).
- cut (exists N : nat, x - eps < Un N).
- intro H6; destruct H6 as [N H6]; exists N.
- intros n H7; unfold R_dist in |- *; apply (Rabs_def1 (Un n - x) eps).
- unfold Rgt in H1.
- apply (Rle_lt_trans (Un n - x) 0 eps (Rle_minus (Un n) x (H5 n)) H1).
- fold Un_growing in H; generalize (growing_prop Un n N H H7); intro H8.
- generalize
- (Rlt_le_trans (x - eps) (Un N) (Un n) H6 (Rge_le (Un n) (Un N) H8));
- intro H9; generalize (Rplus_lt_compat_l (- x) (x - eps) (Un n) H9);
- unfold Rminus in |- *; rewrite <- (Rplus_assoc (- x) x (- eps));
- rewrite (Rplus_comm (- x) (Un n)); fold (Un n - x) in |- *;
- rewrite Rplus_opp_l; rewrite (let (H1, H2) := Rplus_ne (- eps) in H2);
- trivial.
- cut (~ (forall N:nat, Un N <= x - eps)).
- intro H6; apply (not_all_not_ex nat (fun N:nat => x - eps < Un N)).
- intro H7; apply H6; intro N; apply Rnot_lt_le; apply H7.
- intro H7; generalize (Un_bound_imp Un (x - eps) H7); intro H8;
- unfold is_upper_bound in H8; generalize (H3 (x - eps) H8);
- apply Rlt_not_le; apply tech_Rgt_minus; exact H1.
+ intros Un Hug Heub.
+ exists (projT1 (completeness (EUn Un) Heub (EUn_noempty Un))).
+ destruct (completeness _ Heub (EUn_noempty Un)) as (l, H).
+ now apply Un_cv_crit_lub.
Qed.
Lemma decreasing_growing :
@@ -518,68 +494,77 @@ Lemma approx_maj :
forall (Un:nat -> R) (pr:has_ub Un) (eps:R),
0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps.
Proof.
- intros.
- set (P := fun k:nat => Rabs (lub Un pr - Un k) < eps).
- unfold P in |- *.
- cut
- ((exists k : nat, P k) ->
- exists k : nat, Rabs (lub Un pr - Un k) < eps).
- intros.
- apply H0.
- apply not_all_not_ex.
- red in |- *; intro.
- 2: unfold P in |- *; trivial.
- unfold P in H1.
- cut (forall n:nat, Rabs (lub Un pr - Un n) >= eps).
- intro.
- cut (is_lub (EUn Un) (lub Un pr)).
- intro.
- unfold is_lub in H3.
- unfold is_upper_bound in H3.
- elim H3; intros.
- cut (forall n:nat, eps <= lub Un pr - Un n).
- intro.
- cut (forall n:nat, Un n <= lub Un pr - eps).
- intro.
- cut (forall x:R, EUn Un x -> x <= lub Un pr - eps).
- intro.
- assert (H9 := H5 (lub Un pr - eps) H8).
- cut (eps <= 0).
- intro.
- elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H H10)).
- apply Rplus_le_reg_l with (lub Un pr - eps).
- rewrite Rplus_0_r.
- replace (lub Un pr - eps + eps) with (lub Un pr);
- [ assumption | ring ].
- intros.
- unfold EUn in H8.
- elim H8; intros.
- rewrite H9; apply H7.
- intro.
- assert (H7 := H6 n).
- apply Rplus_le_reg_l with (eps - Un n).
- replace (eps - Un n + Un n) with eps.
- replace (eps - Un n + (lub Un pr - eps)) with (lub Un pr - Un n).
- assumption.
- ring.
- ring.
- intro.
- assert (H6 := H2 n).
- rewrite Rabs_right in H6.
- apply Rge_le.
- assumption.
- apply Rle_ge.
- apply Rplus_le_reg_l with (Un n).
- rewrite Rplus_0_r;
- replace (Un n + (lub Un pr - Un n)) with (lub Un pr);
- [ apply H4 | ring ].
- exists n; reflexivity.
- unfold lub in |- *.
- case (ub_to_lub Un pr).
- trivial.
- intro.
- assert (H2 := H1 n).
- apply not_Rlt; assumption.
+ intros Un pr.
+ pose (Vn := fix aux n := match n with S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' | O => Un O end).
+ pose (In := fix aux n := match n with S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' | O => O end).
+
+ assert (VUI: forall n, Vn n = Un (In n)).
+ induction n.
+ easy.
+ simpl.
+ destruct (Rle_lt_dec (Vn n) (Un (S n))) as [H1|H1].
+ destruct (Rle_lt_dec (Un (S n)) (Un (S n))) as [H2|H2].
+ easy.
+ elim (Rlt_irrefl _ H2).
+ destruct (Rle_lt_dec (Vn n) (Un (S n))) as [H2|H2].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 H1)).
+ exact IHn.
+
+ assert (HubV : has_ub Vn).
+ destruct pr as (ub, Hub).
+ exists ub.
+ intros x (n, Hn).
+ rewrite Hn, VUI.
+ apply Hub.
+ now exists (In n).
+
+ assert (HgrV : Un_growing Vn).
+ intros n.
+ induction n.
+ simpl.
+ destruct (Rle_lt_dec (Un O) (Un 1%nat)) as [H|_].
+ exact H.
+ apply Rle_refl.
+ simpl.
+ destruct (Rle_lt_dec (Vn n) (Un (S n))) as [H1|H1].
+ destruct (Rle_lt_dec (Un (S n)) (Un (S (S n)))) as [H2|H2].
+ exact H2.
+ apply Rle_refl.
+ destruct (Rle_lt_dec (Vn n) (Un (S (S n)))) as [H2|H2].
+ exact H2.
+ apply Rle_refl.
+
+ destruct (ub_to_lub Vn HubV) as (l, Hl).
+ unfold lub.
+ destruct (ub_to_lub Un pr) as (l', Hl').
+ replace l' with l.
+ intros eps Heps.
+ destruct (Un_cv_crit_lub Vn HgrV l Hl eps Heps) as (n, Hn).
+ exists (In n).
+ rewrite <- VUI.
+ rewrite Rabs_minus_sym.
+ apply Hn.
+ apply le_refl.
+
+ apply Rle_antisym.
+ apply Hl.
+ intros n (k, Hk).
+ rewrite Hk, VUI.
+ apply Hl'.
+ now exists (In k).
+ apply Hl'.
+ intros n (k, Hk).
+ rewrite Hk.
+ apply Rle_trans with (Vn k).
+ clear.
+ induction k.
+ apply Rle_refl.
+ simpl.
+ destruct (Rle_lt_dec (Vn k) (Un (S k))) as [H|H].
+ apply Rle_refl.
+ now apply Rlt_le.
+ apply Hl.
+ now exists k.
Qed.
(**********)
@@ -587,72 +572,23 @@ Lemma approx_min :
forall (Un:nat -> R) (pr:has_lb Un) (eps:R),
0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < eps.
Proof.
- intros.
- set (P := fun k:nat => Rabs (glb Un pr - Un k) < eps).
- unfold P in |- *.
- cut
- ((exists k : nat, P k) ->
- exists k : nat, Rabs (glb Un pr - Un k) < eps).
- intros.
- apply H0.
- apply not_all_not_ex.
- red in |- *; intro.
- 2: unfold P in |- *; trivial.
- unfold P in H1.
- cut (forall n:nat, Rabs (glb Un pr - Un n) >= eps).
- intro.
- cut (is_lub (EUn (opp_seq Un)) (- glb Un pr)).
- intro.
- unfold is_lub in H3.
- unfold is_upper_bound in H3.
- elim H3; intros.
- cut (forall n:nat, eps <= Un n - glb Un pr).
- intro.
- cut (forall n:nat, opp_seq Un n <= - glb Un pr - eps).
- intro.
- cut (forall x:R, EUn (opp_seq Un) x -> x <= - glb Un pr - eps).
- intro.
- assert (H9 := H5 (- glb Un pr - eps) H8).
- cut (eps <= 0).
- intro.
- elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H H10)).
- apply Rplus_le_reg_l with (- glb Un pr - eps).
- rewrite Rplus_0_r.
- replace (- glb Un pr - eps + eps) with (- glb Un pr);
- [ assumption | ring ].
- intros.
- unfold EUn in H8.
- elim H8; intros.
- rewrite H9; apply H7.
- intro.
- assert (H7 := H6 n).
- unfold opp_seq in |- *.
- apply Rplus_le_reg_l with (eps + Un n).
- replace (eps + Un n + - Un n) with eps.
- replace (eps + Un n + (- glb Un pr - eps)) with (Un n - glb Un pr).
- assumption.
- ring.
- ring.
- intro.
- assert (H6 := H2 n).
- rewrite Rabs_left1 in H6.
- apply Rge_le.
- replace (Un n - glb Un pr) with (- (glb Un pr - Un n));
- [ assumption | ring ].
- apply Rplus_le_reg_l with (- glb Un pr).
- rewrite Rplus_0_r;
- replace (- glb Un pr + (glb Un pr - Un n)) with (- Un n).
- apply H4.
- exists n; reflexivity.
- ring.
- unfold glb in |- *.
- case (lb_to_glb Un pr); simpl.
- intro.
- rewrite Ropp_involutive.
- trivial.
- intro.
- assert (H2 := H1 n).
- apply not_Rlt; assumption.
+ intros Un pr.
+ unfold glb.
+ destruct lb_to_glb as (lb, Hlb).
+ intros eps Heps.
+ destruct (approx_maj _ pr eps Heps) as (n, Hn).
+ exists n.
+ unfold Rminus.
+ rewrite <- Ropp_plus_distr, Rabs_Ropp.
+ replace lb with (lub (opp_seq Un) pr).
+ now rewrite <- (Ropp_involutive (Un n)).
+ unfold lub.
+ destruct ub_to_lub as (ub, Hub).
+ apply Rle_antisym.
+ apply Hub.
+ apply Hlb.
+ apply Hlb.
+ apply Hub.
Qed.
(** Unicity of limit for convergent sequences *)
@@ -910,73 +846,6 @@ Proof.
left; assumption.
Qed.
-Lemma tech10 :
- forall (Un:nat -> R) (x:R), Un_growing Un -> is_lub (EUn Un) x -> Un_cv Un x.
-Proof.
- intros; cut (bound (EUn Un)).
- intro; assert (H2 := Un_cv_crit _ H H1).
- elim H2; intros.
- case (total_order_T x x0); intro.
- elim s; intro.
- cut (forall n:nat, Un n <= x).
- intro; unfold Un_cv in H3; cut (0 < x0 - x).
- intro; elim (H3 (x0 - x) H5); intros.
- cut (x1 >= x1)%nat.
- intro; assert (H8 := H6 x1 H7).
- unfold R_dist in H8; rewrite Rabs_left1 in H8.
- rewrite Ropp_minus_distr in H8; unfold Rminus in H8.
- assert (H9 := Rplus_lt_reg_r x0 _ _ H8).
- assert (H10 := Ropp_lt_cancel _ _ H9).
- assert (H11 := H4 x1).
- elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H10 H11)).
- apply Rle_minus; apply Rle_trans with x.
- apply H4.
- left; assumption.
- unfold ge in |- *; apply le_n.
- apply Rgt_minus; assumption.
- intro; unfold is_lub in H0; unfold is_upper_bound in H0; elim H0; intros.
- apply H4; unfold EUn in |- *; exists n; reflexivity.
- rewrite b; assumption.
- cut (forall n:nat, Un n <= x0).
- intro; unfold is_lub in H0; unfold is_upper_bound in H0; elim H0; intros.
- cut (forall y:R, EUn Un y -> y <= x0).
- intro; assert (H8 := H6 _ H7).
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H8 r)).
- unfold EUn in |- *; intros; elim H7; intros.
- rewrite H8; apply H4.
- intro; case (Rle_dec (Un n) x0); intro.
- assumption.
- cut (forall n0:nat, (n <= n0)%nat -> x0 < Un n0).
- intro; unfold Un_cv in H3; cut (0 < Un n - x0).
- intro; elim (H3 (Un n - x0) H5); intros.
- cut (max n x1 >= x1)%nat.
- intro; assert (H8 := H6 (max n x1) H7).
- unfold R_dist in H8.
- rewrite Rabs_right in H8.
- unfold Rminus in H8; do 2 rewrite <- (Rplus_comm (- x0)) in H8.
- assert (H9 := Rplus_lt_reg_r _ _ _ H8).
- cut (Un n <= Un (max n x1)).
- intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H10 H9)).
- apply tech9; [ assumption | apply le_max_l ].
- apply Rge_trans with (Un n - x0).
- unfold Rminus in |- *; apply Rle_ge; do 2 rewrite <- (Rplus_comm (- x0));
- apply Rplus_le_compat_l.
- apply tech9; [ assumption | apply le_max_l ].
- left; assumption.
- unfold ge in |- *; apply le_max_r.
- apply Rplus_lt_reg_r with x0.
- rewrite Rplus_0_r; unfold Rminus in |- *; rewrite (Rplus_comm x0);
- rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
- apply H4; apply le_n.
- intros; apply Rlt_le_trans with (Un n).
- case (Rlt_le_dec x0 (Un n)); intro.
- assumption.
- elim n0; assumption.
- apply tech9; assumption.
- unfold bound in |- *; exists x; unfold is_lub in H0; elim H0; intros;
- assumption.
-Qed.
-
Lemma tech13 :
forall (An:nat -> R) (k:R),
0 <= k < 1 ->