summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtrigo_fun.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rtrigo_fun.v')
-rw-r--r--theories/Reals/Rtrigo_fun.v30
1 files changed, 15 insertions, 15 deletions
diff --git a/theories/Reals/Rtrigo_fun.v b/theories/Reals/Rtrigo_fun.v
index b7720141..b131b510 100644
--- a/theories/Reals/Rtrigo_fun.v
+++ b/theories/Reals/Rtrigo_fun.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -9,7 +9,7 @@
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
-Open Local Scope R_scope.
+Local Open Scope R_scope.
(*****************************************************************)
(** To define transcendental functions *)
@@ -20,8 +20,8 @@ Open Local Scope R_scope.
Lemma Alembert_exp :
Un_cv (fun n:nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0.
Proof.
- unfold Un_cv in |- *; intros; elim (Rgt_dec eps 1); intro.
- split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist in |- *;
+ unfold Un_cv; intros; elim (Rgt_dec eps 1); intro.
+ split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist;
rewrite (Rminus_0_r (Rabs (/ INR (S n))));
rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
intro; rewrite (Rabs_pos_eq (/ INR (S n))).
@@ -39,7 +39,7 @@ Proof.
in H4; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H4;
rewrite (Rmult_comm (/ INR (S n))) in H4;
rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H4;
- rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (sym_not_equal (O_S n)))) in H4;
+ rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (not_eq_sym (O_S n)))) in H4;
rewrite (let (H1, H2) := Rmult_ne eps in H1) in H4;
assumption.
apply Rlt_minus; unfold Rgt in a; rewrite <- Rinv_1;
@@ -47,11 +47,11 @@ Proof.
rewrite (let (H1, H2) := Rmult_ne eps in H2); unfold Rgt in H;
assumption.
unfold Rgt in H1; apply Rlt_le; assumption.
- unfold Rgt in |- *; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+ unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
(**)
cut (0 <= up (/ eps - 1))%Z.
intro; elim (IZN (up (/ eps - 1)) H0); intros; split with x; intros;
- rewrite (simpl_fact n); unfold R_dist in |- *;
+ rewrite (simpl_fact n); unfold R_dist;
rewrite (Rminus_0_r (Rabs (/ INR (S n))));
rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
intro; rewrite (Rabs_pos_eq (/ INR (S n))).
@@ -72,28 +72,28 @@ Proof.
in H6; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H6;
rewrite (Rmult_comm (/ INR (S n))) in H6;
rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H6;
- rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (sym_not_equal (O_S n)))) in H6;
+ rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (not_eq_sym (O_S n)))) in H6;
rewrite (let (H1, H2) := Rmult_ne eps in H1) in H6;
assumption.
- cut (IZR (up (/ eps - 1)) = IZR (Z_of_nat x));
+ cut (IZR (up (/ eps - 1)) = IZR (Z.of_nat x));
[ intro | rewrite H1; trivial ].
elim (archimed (/ eps - 1)); intros; clear H6; unfold Rgt in H5;
rewrite H4 in H5; rewrite INR_IZR_INZ; assumption.
unfold Rgt in H1; apply Rlt_le; assumption.
- unfold Rgt in |- *; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+ unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
apply (le_O_IZR (up (/ eps - 1)));
apply (Rle_trans 0 (/ eps - 1) (IZR (up (/ eps - 1)))).
- generalize (Rnot_gt_le eps 1 b); clear b; unfold Rle in |- *; intro; elim H0;
+ generalize (Rnot_gt_le eps 1 b); clear b; unfold Rle; intro; elim H0;
clear H0; intro.
left; unfold Rgt in H;
generalize (Rmult_lt_compat_l (/ eps) eps 1 (Rinv_0_lt_compat eps H) H0);
rewrite
(Rinv_l eps
- (sym_not_eq (Rlt_dichotomy_converse 0 eps (or_introl (0 > eps) H))))
+ (not_eq_sym (Rlt_dichotomy_converse 0 eps (or_introl (0 > eps) H))))
; rewrite (let (H1, H2) := Rmult_ne (/ eps) in H1);
- intro; fold (/ eps - 1 > 0) in |- *; apply Rgt_minus;
- unfold Rgt in |- *; assumption.
- right; rewrite H0; rewrite Rinv_1; apply sym_eq; apply Rminus_diag_eq; auto.
+ intro; fold (/ eps - 1 > 0); apply Rgt_minus;
+ unfold Rgt; assumption.
+ right; rewrite H0; rewrite Rinv_1; symmetry; apply Rminus_diag_eq; auto.
elim (archimed (/ eps - 1)); intros; clear H1; unfold Rgt in H0; apply Rlt_le;
assumption.
Qed.