summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtrigo_def.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rtrigo_def.v')
-rw-r--r--theories/Reals/Rtrigo_def.v412
1 files changed, 412 insertions, 0 deletions
diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v
new file mode 100644
index 00000000..92ec68ce
--- /dev/null
+++ b/theories/Reals/Rtrigo_def.v
@@ -0,0 +1,412 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Rtrigo_def.v,v 1.17.2.1 2004/07/16 19:31:14 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import SeqSeries.
+Require Import Rtrigo_fun.
+Require Import Max.
+Open Local Scope R_scope.
+
+(*****************************)
+(* Definition of exponential *)
+(*****************************)
+Definition exp_in (x l:R) : Prop :=
+ infinit_sum (fun i:nat => / INR (fact i) * x ^ i) l.
+
+Lemma exp_cof_no_R0 : forall n:nat, / INR (fact n) <> 0.
+intro.
+apply Rinv_neq_0_compat.
+apply INR_fact_neq_0.
+Qed.
+
+Lemma exist_exp : forall x:R, sigT (fun l:R => exp_in x l).
+intro;
+ generalize
+ (Alembert_C3 (fun n:nat => / INR (fact n)) x exp_cof_no_R0 Alembert_exp).
+unfold Pser, exp_in in |- *.
+trivial.
+Defined.
+
+Definition exp (x:R) : R := projT1 (exist_exp x).
+
+Lemma pow_i : forall i:nat, (0 < i)%nat -> 0 ^ i = 0.
+intros; apply pow_ne_zero.
+red in |- *; intro; rewrite H0 in H; elim (lt_irrefl _ H).
+Qed.
+
+(*i Calculus of $e^0$ *)
+Lemma exist_exp0 : sigT (fun l:R => exp_in 0 l).
+apply existT with 1.
+unfold exp_in in |- *; unfold infinit_sum in |- *; intros.
+exists 0%nat.
+intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1.
+unfold R_dist in |- *; replace (1 - 1) with 0;
+ [ rewrite Rabs_R0; assumption | ring ].
+induction n as [| n Hrecn].
+simpl in |- *; rewrite Rinv_1; ring.
+rewrite tech5.
+rewrite <- Hrecn.
+simpl in |- *.
+ring.
+unfold ge in |- *; apply le_O_n.
+Defined.
+
+Lemma exp_0 : exp 0 = 1.
+cut (exp_in 0 (exp 0)).
+cut (exp_in 0 1).
+unfold exp_in in |- *; intros; eapply uniqueness_sum.
+apply H0.
+apply H.
+exact (projT2 exist_exp0).
+exact (projT2 (exist_exp 0)).
+Qed.
+
+(**************************************)
+(* Definition of hyperbolic functions *)
+(**************************************)
+Definition cosh (x:R) : R := (exp x + exp (- x)) / 2.
+Definition sinh (x:R) : R := (exp x - exp (- x)) / 2.
+Definition tanh (x:R) : R := sinh x / cosh x.
+
+Lemma cosh_0 : cosh 0 = 1.
+unfold cosh in |- *; rewrite Ropp_0; rewrite exp_0.
+unfold Rdiv in |- *; rewrite <- Rinv_r_sym; [ reflexivity | discrR ].
+Qed.
+
+Lemma sinh_0 : sinh 0 = 0.
+unfold sinh in |- *; rewrite Ropp_0; rewrite exp_0.
+unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r; apply Rmult_0_l.
+Qed.
+
+Definition cos_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n)).
+
+Lemma simpl_cos_n :
+ forall n:nat, cos_n (S n) / cos_n n = - / INR (2 * S n * (2 * n + 1)).
+intro; unfold cos_n in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+rewrite pow_add; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+rewrite Rinv_involutive.
+replace
+ ((-1) ^ n * (-1) ^ 1 * / INR (fact (2 * (n + 1))) *
+ (/ (-1) ^ n * INR (fact (2 * n)))) with
+ ((-1) ^ n * / (-1) ^ n * / INR (fact (2 * (n + 1))) * INR (fact (2 * n)) *
+ (-1) ^ 1); [ idtac | ring ].
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_l; unfold pow in |- *; rewrite Rmult_1_r.
+replace (2 * (n + 1))%nat with (S (S (2 * n))); [ idtac | ring ].
+do 2 rewrite fact_simpl; do 2 rewrite mult_INR;
+ repeat rewrite Rinv_mult_distr; try (apply not_O_INR; discriminate).
+rewrite <- (Rmult_comm (-1)).
+repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r.
+replace (S (2 * n)) with (2 * n + 1)%nat; [ idtac | ring ].
+rewrite mult_INR; rewrite Rinv_mult_distr.
+ring.
+apply not_O_INR; discriminate.
+replace (2 * n + 1)%nat with (S (2 * n));
+ [ apply not_O_INR; discriminate | ring ].
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
+apply pow_nonzero; discrR.
+apply INR_fact_neq_0.
+apply pow_nonzero; discrR.
+apply Rinv_neq_0_compat; apply INR_fact_neq_0.
+Qed.
+
+Lemma archimed_cor1 :
+ forall eps:R, 0 < eps -> exists N : nat, / INR N < eps /\ (0 < N)%nat.
+intros; cut (/ eps < IZR (up (/ eps))).
+intro; cut (0 <= up (/ eps))%Z.
+intro; assert (H2 := IZN _ H1); elim H2; intros; exists (max x 1).
+split.
+cut (0 < IZR (Z_of_nat x)).
+intro; rewrite INR_IZR_INZ; apply Rle_lt_trans with (/ IZR (Z_of_nat x)).
+apply Rmult_le_reg_l with (IZR (Z_of_nat x)).
+assumption.
+rewrite <- Rinv_r_sym;
+ [ idtac | red in |- *; intro; rewrite H5 in H4; elim (Rlt_irrefl _ H4) ].
+apply Rmult_le_reg_l with (IZR (Z_of_nat (max x 1))).
+apply Rlt_le_trans with (IZR (Z_of_nat x)).
+assumption.
+repeat rewrite <- INR_IZR_INZ; apply le_INR; apply le_max_l.
+rewrite Rmult_1_r; rewrite (Rmult_comm (IZR (Z_of_nat (max x 1))));
+ rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r; repeat rewrite <- INR_IZR_INZ; apply le_INR;
+ apply le_max_l.
+rewrite <- INR_IZR_INZ; apply not_O_INR.
+red in |- *; intro; assert (H6 := le_max_r x 1); cut (0 < 1)%nat;
+ [ intro | apply lt_O_Sn ]; assert (H8 := lt_le_trans _ _ _ H7 H6);
+ rewrite H5 in H8; elim (lt_irrefl _ H8).
+pattern eps at 1 in |- *; rewrite <- Rinv_involutive.
+apply Rinv_lt_contravar.
+apply Rmult_lt_0_compat; [ apply Rinv_0_lt_compat; assumption | assumption ].
+rewrite H3 in H0; assumption.
+red in |- *; intro; rewrite H5 in H; elim (Rlt_irrefl _ H).
+apply Rlt_trans with (/ eps).
+apply Rinv_0_lt_compat; assumption.
+rewrite H3 in H0; assumption.
+apply lt_le_trans with 1%nat; [ apply lt_O_Sn | apply le_max_r ].
+apply le_IZR; replace (IZR 0) with 0; [ idtac | reflexivity ]; left;
+ apply Rlt_trans with (/ eps);
+ [ apply Rinv_0_lt_compat; assumption | assumption ].
+assert (H0 := archimed (/ eps)).
+elim H0; intros; assumption.
+Qed.
+
+Lemma Alembert_cos : Un_cv (fun n:nat => Rabs (cos_n (S n) / cos_n n)) 0.
+unfold Un_cv in |- *; intros.
+assert (H0 := archimed_cor1 eps H).
+elim H0; intros; exists x.
+intros; rewrite simpl_cos_n; unfold R_dist in |- *; unfold Rminus in |- *;
+ rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu;
+ rewrite Rabs_Ropp; rewrite Rabs_right.
+rewrite mult_INR; rewrite Rinv_mult_distr.
+cut (/ INR (2 * S n) < 1).
+intro; cut (/ INR (2 * n + 1) < eps).
+intro; rewrite <- (Rmult_1_l eps).
+apply Rmult_gt_0_lt_compat; try assumption.
+change (0 < / INR (2 * n + 1)) in |- *; apply Rinv_0_lt_compat;
+ apply lt_INR_0.
+replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
+apply Rlt_0_1.
+cut (x < 2 * n + 1)%nat.
+intro; assert (H5 := lt_INR _ _ H4).
+apply Rlt_trans with (/ INR x).
+apply Rinv_lt_contravar.
+apply Rmult_lt_0_compat.
+apply lt_INR_0.
+elim H1; intros; assumption.
+apply lt_INR_0; replace (2 * n + 1)%nat with (S (2 * n));
+ [ apply lt_O_Sn | ring ].
+assumption.
+elim H1; intros; assumption.
+apply lt_le_trans with (S n).
+unfold ge in H2; apply le_lt_n_Sm; assumption.
+replace (2 * n + 1)%nat with (S (2 * n)); [ idtac | ring ].
+apply le_n_S; apply le_n_2n.
+apply Rmult_lt_reg_l with (INR (2 * S n)).
+apply lt_INR_0; replace (2 * S n)%nat with (S (S (2 * n))).
+apply lt_O_Sn.
+replace (S n) with (n + 1)%nat; [ idtac | ring ].
+ring.
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; replace 1 with (INR 1); [ apply lt_INR | reflexivity ].
+replace (2 * S n)%nat with (S (S (2 * n))).
+apply lt_n_S; apply lt_O_Sn.
+replace (S n) with (n + 1)%nat; [ ring | ring ].
+apply not_O_INR; discriminate.
+apply not_O_INR; discriminate.
+replace (2 * n + 1)%nat with (S (2 * n));
+ [ apply not_O_INR; discriminate | ring ].
+apply Rle_ge; left; apply Rinv_0_lt_compat.
+apply lt_INR_0.
+replace (2 * S n * (2 * n + 1))%nat with (S (S (4 * (n * n) + 6 * n))).
+apply lt_O_Sn.
+apply INR_eq.
+repeat rewrite S_INR; rewrite plus_INR; repeat rewrite mult_INR;
+ rewrite plus_INR; rewrite mult_INR; repeat rewrite S_INR;
+ replace (INR 0) with 0; [ ring | reflexivity ].
+Qed.
+
+Lemma cosn_no_R0 : forall n:nat, cos_n n <> 0.
+intro; unfold cos_n in |- *; unfold Rdiv in |- *; apply prod_neq_R0.
+apply pow_nonzero; discrR.
+apply Rinv_neq_0_compat.
+apply INR_fact_neq_0.
+Qed.
+
+(**********)
+Definition cos_in (x l:R) : Prop :=
+ infinit_sum (fun i:nat => cos_n i * x ^ i) l.
+
+(**********)
+Lemma exist_cos : forall x:R, sigT (fun l:R => cos_in x l).
+intro; generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos).
+unfold Pser, cos_in in |- *; trivial.
+Qed.
+
+(* Definition of cosinus *)
+(*************************)
+Definition cos (x:R) : R :=
+ match exist_cos (Rsqr x) with
+ | existT a b => a
+ end.
+
+
+Definition sin_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n + 1)).
+
+Lemma simpl_sin_n :
+ forall n:nat, sin_n (S n) / sin_n n = - / INR ((2 * S n + 1) * (2 * S n)).
+intro; unfold sin_n in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+rewrite pow_add; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+rewrite Rinv_involutive.
+replace
+ ((-1) ^ n * (-1) ^ 1 * / INR (fact (2 * (n + 1) + 1)) *
+ (/ (-1) ^ n * INR (fact (2 * n + 1)))) with
+ ((-1) ^ n * / (-1) ^ n * / INR (fact (2 * (n + 1) + 1)) *
+ INR (fact (2 * n + 1)) * (-1) ^ 1); [ idtac | ring ].
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_l; unfold pow in |- *; rewrite Rmult_1_r;
+ replace (2 * (n + 1) + 1)%nat with (S (S (2 * n + 1))).
+do 2 rewrite fact_simpl; do 2 rewrite mult_INR;
+ repeat rewrite Rinv_mult_distr.
+rewrite <- (Rmult_comm (-1)); repeat rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r; replace (S (2 * n + 1)) with (2 * (n + 1))%nat.
+repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr.
+ring.
+apply not_O_INR; discriminate.
+replace (n + 1)%nat with (S n); [ apply not_O_INR; discriminate | ring ].
+apply not_O_INR; discriminate.
+apply prod_neq_R0.
+apply not_O_INR; discriminate.
+replace (n + 1)%nat with (S n); [ apply not_O_INR; discriminate | ring ].
+apply not_O_INR; discriminate.
+replace (n + 1)%nat with (S n); [ apply not_O_INR; discriminate | ring ].
+rewrite mult_plus_distr_l; cut (forall n:nat, S n = (n + 1)%nat).
+intros; rewrite (H (2 * n + 1)%nat).
+ring.
+intros; ring.
+apply INR_fact_neq_0.
+apply not_O_INR; discriminate.
+apply INR_fact_neq_0.
+apply not_O_INR; discriminate.
+apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
+cut (forall n:nat, S (S n) = (n + 2)%nat);
+ [ intros; rewrite (H (2 * n + 1)%nat); ring | intros; ring ].
+apply pow_nonzero; discrR.
+apply INR_fact_neq_0.
+apply pow_nonzero; discrR.
+apply Rinv_neq_0_compat; apply INR_fact_neq_0.
+Qed.
+
+Lemma Alembert_sin : Un_cv (fun n:nat => Rabs (sin_n (S n) / sin_n n)) 0.
+unfold Un_cv in |- *; intros; assert (H0 := archimed_cor1 eps H).
+elim H0; intros; exists x.
+intros; rewrite simpl_sin_n; unfold R_dist in |- *; unfold Rminus in |- *;
+ rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu;
+ rewrite Rabs_Ropp; rewrite Rabs_right.
+rewrite mult_INR; rewrite Rinv_mult_distr.
+cut (/ INR (2 * S n) < 1).
+intro; cut (/ INR (2 * S n + 1) < eps).
+intro; rewrite <- (Rmult_1_l eps); rewrite (Rmult_comm (/ INR (2 * S n + 1)));
+ apply Rmult_gt_0_lt_compat; try assumption.
+change (0 < / INR (2 * S n + 1)) in |- *; apply Rinv_0_lt_compat;
+ apply lt_INR_0; replace (2 * S n + 1)%nat with (S (2 * S n));
+ [ apply lt_O_Sn | ring ].
+apply Rlt_0_1.
+cut (x < 2 * S n + 1)%nat.
+intro; assert (H5 := lt_INR _ _ H4); apply Rlt_trans with (/ INR x).
+apply Rinv_lt_contravar.
+apply Rmult_lt_0_compat.
+apply lt_INR_0; elim H1; intros; assumption.
+apply lt_INR_0; replace (2 * S n + 1)%nat with (S (2 * S n));
+ [ apply lt_O_Sn | ring ].
+assumption.
+elim H1; intros; assumption.
+apply lt_le_trans with (S n).
+unfold ge in H2; apply le_lt_n_Sm; assumption.
+replace (2 * S n + 1)%nat with (S (2 * S n)); [ idtac | ring ].
+apply le_S; apply le_n_2n.
+apply Rmult_lt_reg_l with (INR (2 * S n)).
+apply lt_INR_0; replace (2 * S n)%nat with (S (S (2 * n)));
+ [ apply lt_O_Sn | replace (S n) with (n + 1)%nat; [ idtac | ring ]; ring ].
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; replace 1 with (INR 1); [ apply lt_INR | reflexivity ].
+replace (2 * S n)%nat with (S (S (2 * n))).
+apply lt_n_S; apply lt_O_Sn.
+replace (S n) with (n + 1)%nat; [ ring | ring ].
+apply not_O_INR; discriminate.
+apply not_O_INR; discriminate.
+apply not_O_INR; discriminate.
+left; change (0 < / INR ((2 * S n + 1) * (2 * S n))) in |- *;
+ apply Rinv_0_lt_compat.
+apply lt_INR_0.
+replace ((2 * S n + 1) * (2 * S n))%nat with
+ (S (S (S (S (S (S (4 * (n * n) + 10 * n))))))).
+apply lt_O_Sn.
+apply INR_eq; repeat rewrite S_INR; rewrite plus_INR; repeat rewrite mult_INR;
+ rewrite plus_INR; rewrite mult_INR; repeat rewrite S_INR;
+ replace (INR 0) with 0; [ ring | reflexivity ].
+Qed.
+
+Lemma sin_no_R0 : forall n:nat, sin_n n <> 0.
+intro; unfold sin_n in |- *; unfold Rdiv in |- *; apply prod_neq_R0.
+apply pow_nonzero; discrR.
+apply Rinv_neq_0_compat; apply INR_fact_neq_0.
+Qed.
+
+(**********)
+Definition sin_in (x l:R) : Prop :=
+ infinit_sum (fun i:nat => sin_n i * x ^ i) l.
+
+(**********)
+Lemma exist_sin : forall x:R, sigT (fun l:R => sin_in x l).
+intro; generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin).
+unfold Pser, sin_n in |- *; trivial.
+Qed.
+
+(***********************)
+(* Definition of sinus *)
+Definition sin (x:R) : R :=
+ match exist_sin (Rsqr x) with
+ | existT a b => x * a
+ end.
+
+(*********************************************)
+(* PROPERTIES *)
+(*********************************************)
+
+Lemma cos_sym : forall x:R, cos x = cos (- x).
+intros; unfold cos in |- *; replace (Rsqr (- x)) with (Rsqr x).
+reflexivity.
+apply Rsqr_neg.
+Qed.
+
+Lemma sin_antisym : forall x:R, sin (- x) = - sin x.
+intro; unfold sin in |- *; replace (Rsqr (- x)) with (Rsqr x);
+ [ idtac | apply Rsqr_neg ].
+case (exist_sin (Rsqr x)); intros; ring.
+Qed.
+
+Lemma sin_0 : sin 0 = 0.
+unfold sin in |- *; case (exist_sin (Rsqr 0)).
+intros; ring.
+Qed.
+
+Lemma exist_cos0 : sigT (fun l:R => cos_in 0 l).
+apply existT with 1.
+unfold cos_in in |- *; unfold infinit_sum in |- *; intros; exists 0%nat.
+intros.
+unfold R_dist in |- *.
+induction n as [| n Hrecn].
+unfold cos_n in |- *; simpl in |- *.
+unfold Rdiv in |- *; rewrite Rinv_1.
+do 2 rewrite Rmult_1_r.
+unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+rewrite tech5.
+replace (cos_n (S n) * 0 ^ S n) with 0.
+rewrite Rplus_0_r.
+apply Hrecn; unfold ge in |- *; apply le_O_n.
+simpl in |- *; ring.
+Defined.
+
+(* Calculus of (cos 0) *)
+Lemma cos_0 : cos 0 = 1.
+cut (cos_in 0 (cos 0)).
+cut (cos_in 0 1).
+unfold cos_in in |- *; intros; eapply uniqueness_sum.
+apply H0.
+apply H.
+exact (projT2 exist_cos0).
+assert (H := projT2 (exist_cos (Rsqr 0))); unfold cos in |- *;
+ pattern 0 at 1 in |- *; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ].
+Qed. \ No newline at end of file