diff options
Diffstat (limited to 'theories/Reals/Rtrigo_calc.v')
-rw-r--r-- | theories/Reals/Rtrigo_calc.v | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/Reals/Rtrigo_calc.v b/theories/Reals/Rtrigo_calc.v index baf0fa4b..a7fddb47 100644 --- a/theories/Reals/Rtrigo_calc.v +++ b/theories/Reals/Rtrigo_calc.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rtrigo_calc.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id$ i*) Require Import Rbase. Require Import Rfunctions. @@ -18,7 +18,7 @@ Open Local Scope R_scope. Lemma tan_PI : tan PI = 0. Proof. unfold tan in |- *; rewrite sin_PI; rewrite cos_PI; unfold Rdiv in |- *; - apply Rmult_0_l. + apply Rmult_0_l. Qed. Lemma sin_3PI2 : sin (3 * (PI / 2)) = -1. @@ -129,7 +129,7 @@ Qed. Lemma R1_sqrt2_neq_0 : 1 / sqrt 2 <> 0. Proof. generalize (Rinv_neq_0_compat (sqrt 2) sqrt2_neq_0); intro H; - generalize (prod_neq_R0 1 (/ sqrt 2) R1_neq_R0 H); + generalize (prod_neq_R0 1 (/ sqrt 2) R1_neq_R0 H); intro H0; assumption. Qed. @@ -163,9 +163,9 @@ Proof. | generalize (Rlt_le 0 2 Hyp); intro H1; assert (Hyp2 : 0 < 3); [ prove_sup0 | generalize (Rlt_le 0 3 Hyp2); intro H2; - generalize (lt_INR_0 1 (neq_O_lt 1 H0)); + generalize (lt_INR_0 1 (neq_O_lt 1 H0)); unfold INR in |- *; intro H3; - generalize (Rplus_lt_compat_l 2 0 1 H3); + generalize (Rplus_lt_compat_l 2 0 1 H3); rewrite Rplus_comm; rewrite Rplus_0_l; replace (2 + 1) with 3; [ intro H4; generalize (sqrt_lt_1 2 3 H1 H2 H4); clear H3; intro H3; apply (Rlt_trans 0 (sqrt 2) (sqrt 3) Rlt_sqrt2_0 H3) @@ -303,7 +303,7 @@ Lemma sin_2PI3 : sin (2 * (PI / 3)) = sqrt 3 / 2. Proof. rewrite double; rewrite sin_plus; rewrite sin_PI3; rewrite cos_PI3; unfold Rdiv in |- *; repeat rewrite Rmult_1_l; rewrite (Rmult_comm (/ 2)); - repeat rewrite <- Rmult_assoc; rewrite double_var; + repeat rewrite <- Rmult_assoc; rewrite double_var; reflexivity. Qed. @@ -385,7 +385,7 @@ Proof. replace (PI + PI / 2) with (3 * (PI / 2)). rewrite Rplus_0_r; intro H2; assumption. pattern PI at 2 in |- *; rewrite double_var; ring. -Qed. +Qed. Lemma Rlt_3PI2_2PI : 3 * (PI / 2) < 2 * PI. Proof. @@ -450,7 +450,7 @@ Proof. left; apply sin_lb_gt_0; assumption. elim H1; intro. rewrite <- H2; unfold sin_lb in |- *; unfold sin_approx in |- *; - unfold sum_f_R0 in |- *; unfold sin_term in |- *; + unfold sum_f_R0 in |- *; unfold sin_term in |- *; repeat rewrite pow_ne_zero. unfold Rdiv in |- *; repeat rewrite Rmult_0_l; repeat rewrite Rmult_0_r; repeat rewrite Rplus_0_r; right; reflexivity. |