summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtrigo.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rtrigo.v')
-rw-r--r--theories/Reals/Rtrigo.v16
1 files changed, 10 insertions, 6 deletions
diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v
index 6e992aa3..b744c788 100644
--- a/theories/Reals/Rtrigo.v
+++ b/theories/Reals/Rtrigo.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtrigo.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rtrigo.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -466,10 +466,10 @@ Proof.
unfold x in |- *; replace 0 with (INR 0);
[ apply le_INR; apply le_O_n | reflexivity ].
prove_sup0.
- ring_nat.
+ ring.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
- ring_nat.
+ ring.
Qed.
Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a.
@@ -1580,10 +1580,14 @@ Lemma cos_eq_0_0 :
Proof.
intros x H; rewrite cos_sin in H; generalize (sin_eq_0_0 (PI / INR 2 + x) H);
intro H2; elim H2; intros x0 H3; exists (x0 - Z_of_nat 1)%Z;
- rewrite <- Z_R_minus; simpl; ring_simplify;
-(* rewrite (Rmult_comm PI);*) (* old ring compat *)
+ rewrite <- Z_R_minus; simpl.
+unfold INR in H3. field_simplify [(sym_eq H3)]. field.
+(**
+ ring_simplify.
+ (* rewrite (Rmult_comm PI);*) (* old ring compat *)
rewrite <- H3; simpl;
- field; repeat split; discrR.
+ field;repeat split; discrR.
+*)
Qed.
Lemma cos_eq_0_1 :