diff options
Diffstat (limited to 'theories/Reals/Rtrigo.v')
-rw-r--r-- | theories/Reals/Rtrigo.v | 16 |
1 files changed, 10 insertions, 6 deletions
diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v index 6e992aa3..b744c788 100644 --- a/theories/Reals/Rtrigo.v +++ b/theories/Reals/Rtrigo.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rtrigo.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Rtrigo.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -466,10 +466,10 @@ Proof. unfold x in |- *; replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ]. prove_sup0. - ring_nat. + ring. apply INR_fact_neq_0. apply INR_fact_neq_0. - ring_nat. + ring. Qed. Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a. @@ -1580,10 +1580,14 @@ Lemma cos_eq_0_0 : Proof. intros x H; rewrite cos_sin in H; generalize (sin_eq_0_0 (PI / INR 2 + x) H); intro H2; elim H2; intros x0 H3; exists (x0 - Z_of_nat 1)%Z; - rewrite <- Z_R_minus; simpl; ring_simplify; -(* rewrite (Rmult_comm PI);*) (* old ring compat *) + rewrite <- Z_R_minus; simpl. +unfold INR in H3. field_simplify [(sym_eq H3)]. field. +(** + ring_simplify. + (* rewrite (Rmult_comm PI);*) (* old ring compat *) rewrite <- H3; simpl; - field; repeat split; discrR. + field;repeat split; discrR. +*) Qed. Lemma cos_eq_0_1 : |