summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtrigo.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rtrigo.v')
-rw-r--r--theories/Reals/Rtrigo.v2876
1 files changed, 1484 insertions, 1392 deletions
diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v
index 060070c4..6e992aa3 100644
--- a/theories/Reals/Rtrigo.v
+++ b/theories/Reals/Rtrigo.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtrigo.v 6245 2004-10-20 13:50:08Z barras $ i*)
+(*i $Id: Rtrigo.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -27,312 +27,356 @@ Axiom sin_PI2 : sin (PI / 2) = 1.
(**********)
Lemma PI_neq0 : PI <> 0.
-red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0;
- elim (Rlt_irrefl _ H0).
+Proof.
+ red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0;
+ elim (Rlt_irrefl _ H0).
Qed.
(**********)
Lemma cos_minus : forall x y:R, cos (x - y) = cos x * cos y + sin x * sin y.
-intros; unfold Rminus in |- *; rewrite cos_plus.
-rewrite <- cos_sym; rewrite sin_antisym; ring.
+Proof.
+ intros; unfold Rminus in |- *; rewrite cos_plus.
+ rewrite <- cos_sym; rewrite sin_antisym; ring.
Qed.
(**********)
Lemma sin2_cos2 : forall x:R, Rsqr (sin x) + Rsqr (cos x) = 1.
-intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x);
- unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0.
+Proof.
+ intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x);
+ unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0.
Qed.
Lemma cos2 : forall x:R, Rsqr (cos x) = 1 - Rsqr (sin x).
-intro x; generalize (sin2_cos2 x); intro H1; rewrite <- H1;
- unfold Rminus in |- *; rewrite <- (Rplus_comm (Rsqr (cos x)));
- rewrite Rplus_assoc; rewrite Rplus_opp_r; symmetry in |- *;
- apply Rplus_0_r.
+Proof.
+ intro x; generalize (sin2_cos2 x); intro H1; rewrite <- H1;
+ unfold Rminus in |- *; rewrite <- (Rplus_comm (Rsqr (cos x)));
+ rewrite Rplus_assoc; rewrite Rplus_opp_r; symmetry in |- *;
+ apply Rplus_0_r.
Qed.
(**********)
Lemma cos_PI2 : cos (PI / 2) = 0.
-apply Rsqr_eq_0; rewrite cos2; rewrite sin_PI2; rewrite Rsqr_1;
- unfold Rminus in |- *; apply Rplus_opp_r.
+Proof.
+ apply Rsqr_eq_0; rewrite cos2; rewrite sin_PI2; rewrite Rsqr_1;
+ unfold Rminus in |- *; apply Rplus_opp_r.
Qed.
(**********)
Lemma cos_PI : cos PI = -1.
-replace PI with (PI / 2 + PI / 2).
-rewrite cos_plus.
-rewrite sin_PI2; rewrite cos_PI2.
-ring.
-symmetry in |- *; apply double_var.
+Proof.
+ replace PI with (PI / 2 + PI / 2).
+ rewrite cos_plus.
+ rewrite sin_PI2; rewrite cos_PI2.
+ ring.
+ symmetry in |- *; apply double_var.
Qed.
Lemma sin_PI : sin PI = 0.
-assert (H := sin2_cos2 PI).
-rewrite cos_PI in H.
-rewrite <- Rsqr_neg in H.
-rewrite Rsqr_1 in H.
-cut (Rsqr (sin PI) = 0).
-intro; apply (Rsqr_eq_0 _ H0).
-apply Rplus_eq_reg_l with 1.
-rewrite Rplus_0_r; rewrite Rplus_comm; exact H.
+Proof.
+ assert (H := sin2_cos2 PI).
+ rewrite cos_PI in H.
+ rewrite <- Rsqr_neg in H.
+ rewrite Rsqr_1 in H.
+ cut (Rsqr (sin PI) = 0).
+ intro; apply (Rsqr_eq_0 _ H0).
+ apply Rplus_eq_reg_l with 1.
+ rewrite Rplus_0_r; rewrite Rplus_comm; exact H.
Qed.
(**********)
Lemma neg_cos : forall x:R, cos (x + PI) = - cos x.
-intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring.
+Proof.
+ intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring.
Qed.
(**********)
Lemma sin_cos : forall x:R, sin x = - cos (PI / 2 + x).
-intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
+Proof.
+ intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.
(**********)
Lemma sin_plus : forall x y:R, sin (x + y) = sin x * cos y + cos x * sin y.
-intros.
-rewrite (sin_cos (x + y)).
-replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ].
-rewrite (sin_cos (PI / 2 + x)).
-replace (PI / 2 + (PI / 2 + x)) with (x + PI).
-rewrite neg_cos.
-replace (cos (PI / 2 + x)) with (- sin x).
-ring.
-rewrite sin_cos; rewrite Ropp_involutive; reflexivity.
-pattern PI at 1 in |- *; rewrite (double_var PI); ring.
+Proof.
+ intros.
+ rewrite (sin_cos (x + y)).
+ replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ].
+ rewrite (sin_cos (PI / 2 + x)).
+ replace (PI / 2 + (PI / 2 + x)) with (x + PI).
+ rewrite neg_cos.
+ replace (cos (PI / 2 + x)) with (- sin x).
+ ring.
+ rewrite sin_cos; rewrite Ropp_involutive; reflexivity.
+ pattern PI at 1 in |- *; rewrite (double_var PI); ring.
Qed.
Lemma sin_minus : forall x y:R, sin (x - y) = sin x * cos y - cos x * sin y.
-intros; unfold Rminus in |- *; rewrite sin_plus.
-rewrite <- cos_sym; rewrite sin_antisym; ring.
+Proof.
+ intros; unfold Rminus in |- *; rewrite sin_plus.
+ rewrite <- cos_sym; rewrite sin_antisym; ring.
Qed.
(**********)
Definition tan (x:R) : R := sin x / cos x.
Lemma tan_plus :
- forall x y:R,
- cos x <> 0 ->
- cos y <> 0 ->
- cos (x + y) <> 0 ->
- 1 - tan x * tan y <> 0 ->
- tan (x + y) = (tan x + tan y) / (1 - tan x * tan y).
-intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus;
- unfold Rdiv in |- *;
- replace (cos x * cos y - sin x * sin y) with
- (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))).
-rewrite Rinv_mult_distr.
-repeat rewrite <- Rmult_assoc;
- replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with
- (sin x * / cos x + sin y * / cos y).
-reflexivity.
-rewrite Rmult_plus_distr_r; rewrite Rinv_mult_distr.
-repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x));
- repeat rewrite <- Rmult_assoc.
-repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ].
-assumption.
-assumption.
-apply prod_neq_R0; assumption.
-assumption.
-unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
- apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc;
- rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y));
- rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc;
- rewrite <- Rinv_r_sym.
-rewrite Rmult_1_l; rewrite (Rmult_comm (sin x));
- rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc;
- apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y));
- rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
-apply Rmult_1_r.
-assumption.
-assumption.
+ forall x y:R,
+ cos x <> 0 ->
+ cos y <> 0 ->
+ cos (x + y) <> 0 ->
+ 1 - tan x * tan y <> 0 ->
+ tan (x + y) = (tan x + tan y) / (1 - tan x * tan y).
+Proof.
+ intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus;
+ unfold Rdiv in |- *;
+ replace (cos x * cos y - sin x * sin y) with
+ (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))).
+ rewrite Rinv_mult_distr.
+ repeat rewrite <- Rmult_assoc;
+ replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with
+ (sin x * / cos x + sin y * / cos y).
+ reflexivity.
+ rewrite Rmult_plus_distr_r; rewrite Rinv_mult_distr.
+ repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x));
+ repeat rewrite <- Rmult_assoc.
+ repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ].
+ assumption.
+ assumption.
+ apply prod_neq_R0; assumption.
+ assumption.
+ unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
+ apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc;
+ rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y));
+ rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym.
+ rewrite Rmult_1_l; rewrite (Rmult_comm (sin x));
+ rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc;
+ apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y));
+ rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
+ apply Rmult_1_r.
+ assumption.
+ assumption.
Qed.
(*******************************************************)
-(* Some properties of cos, sin and tan *)
+(** * Some properties of cos, sin and tan *)
(*******************************************************)
Lemma sin2 : forall x:R, Rsqr (sin x) = 1 - Rsqr (cos x).
-intro x; generalize (cos2 x); intro H1; rewrite H1.
-unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
- rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry in |- *;
- apply Ropp_involutive.
+Proof.
+ intro x; generalize (cos2 x); intro H1; rewrite H1.
+ unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
+ rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry in |- *;
+ apply Ropp_involutive.
Qed.
Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x.
-intro x; rewrite double; rewrite sin_plus.
-rewrite <- (Rmult_comm (sin x)); symmetry in |- *; rewrite Rmult_assoc;
- apply double.
+Proof.
+ intro x; rewrite double; rewrite sin_plus.
+ rewrite <- (Rmult_comm (sin x)); symmetry in |- *; rewrite Rmult_assoc;
+ apply double.
Qed.
Lemma cos_2a : forall x:R, cos (2 * x) = cos x * cos x - sin x * sin x.
-intro x; rewrite double; apply cos_plus.
+Proof.
+ intro x; rewrite double; apply cos_plus.
Qed.
Lemma cos_2a_cos : forall x:R, cos (2 * x) = 2 * cos x * cos x - 1.
-intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc;
- rewrite cos_plus; generalize (sin2_cos2 x); rewrite double;
- intro H1; rewrite <- H1; ring_Rsqr.
+Proof.
+ intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc;
+ rewrite cos_plus; generalize (sin2_cos2 x); rewrite double;
+ intro H1; rewrite <- H1; ring_Rsqr.
Qed.
Lemma cos_2a_sin : forall x:R, cos (2 * x) = 1 - 2 * sin x * sin x.
-intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double.
-generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus;
- ring_Rsqr.
+Proof.
+ intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double.
+ generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus;
+ ring_Rsqr.
Qed.
Lemma tan_2a :
- forall x:R,
- cos x <> 0 ->
- cos (2 * x) <> 0 ->
- 1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x).
-repeat rewrite double; intros; repeat rewrite double; rewrite double in H0;
- apply tan_plus; assumption.
+ forall x:R,
+ cos x <> 0 ->
+ cos (2 * x) <> 0 ->
+ 1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x).
+Proof.
+ repeat rewrite double; intros; repeat rewrite double; rewrite double in H0;
+ apply tan_plus; assumption.
Qed.
Lemma sin_neg : forall x:R, sin (- x) = - sin x.
-apply sin_antisym.
+Proof.
+ apply sin_antisym.
Qed.
Lemma cos_neg : forall x:R, cos (- x) = cos x.
-intro; symmetry in |- *; apply cos_sym.
+Proof.
+ intro; symmetry in |- *; apply cos_sym.
Qed.
Lemma tan_0 : tan 0 = 0.
-unfold tan in |- *; rewrite sin_0; rewrite cos_0.
-unfold Rdiv in |- *; apply Rmult_0_l.
+Proof.
+ unfold tan in |- *; rewrite sin_0; rewrite cos_0.
+ unfold Rdiv in |- *; apply Rmult_0_l.
Qed.
Lemma tan_neg : forall x:R, tan (- x) = - tan x.
-intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg;
- unfold Rdiv in |- *.
-apply Ropp_mult_distr_l_reverse.
+Proof.
+ intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg;
+ unfold Rdiv in |- *.
+ apply Ropp_mult_distr_l_reverse.
Qed.
Lemma tan_minus :
- forall x y:R,
- cos x <> 0 ->
- cos y <> 0 ->
- cos (x - y) <> 0 ->
- 1 + tan x * tan y <> 0 ->
- tan (x - y) = (tan x - tan y) / (1 + tan x * tan y).
-intros; unfold Rminus in |- *; rewrite tan_plus.
-rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
- rewrite Rmult_opp_opp; reflexivity.
-assumption.
-rewrite cos_neg; assumption.
-assumption.
-rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
- rewrite Rmult_opp_opp; assumption.
+ forall x y:R,
+ cos x <> 0 ->
+ cos y <> 0 ->
+ cos (x - y) <> 0 ->
+ 1 + tan x * tan y <> 0 ->
+ tan (x - y) = (tan x - tan y) / (1 + tan x * tan y).
+Proof.
+ intros; unfold Rminus in |- *; rewrite tan_plus.
+ rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
+ rewrite Rmult_opp_opp; reflexivity.
+ assumption.
+ rewrite cos_neg; assumption.
+ assumption.
+ rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
+ rewrite Rmult_opp_opp; assumption.
Qed.
Lemma cos_3PI2 : cos (3 * (PI / 2)) = 0.
-replace (3 * (PI / 2)) with (PI + PI / 2).
-rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring.
-pattern PI at 1 in |- *; rewrite (double_var PI).
-ring.
+Proof.
+ replace (3 * (PI / 2)) with (PI + PI / 2).
+ rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring.
+ pattern PI at 1 in |- *; rewrite (double_var PI).
+ ring.
Qed.
Lemma sin_2PI : sin (2 * PI) = 0.
-rewrite sin_2a; rewrite sin_PI; ring.
+Proof.
+ rewrite sin_2a; rewrite sin_PI; ring.
Qed.
Lemma cos_2PI : cos (2 * PI) = 1.
-rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring.
+Proof.
+ rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring.
Qed.
Lemma neg_sin : forall x:R, sin (x + PI) = - sin x.
-intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring.
+Proof.
+ intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring.
Qed.
Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x.
-intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI; rewrite Rmult_0_l;
- unfold Rminus in |- *; rewrite Rplus_0_l; rewrite Ropp_mult_distr_l_reverse;
- rewrite Ropp_involutive; apply Rmult_1_l.
+Proof.
+ intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI; rewrite Rmult_0_l;
+ unfold Rminus in |- *; rewrite Rplus_0_l; rewrite Ropp_mult_distr_l_reverse;
+ rewrite Ropp_involutive; apply Rmult_1_l.
Qed.
Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x.
-intros x k; induction k as [| k Hreck].
-cut (x + 2 * INR 0 * PI = x); [ intro; rewrite H; reflexivity | ring ].
-replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI);
- [ rewrite sin_plus; rewrite sin_2PI; rewrite cos_2PI; ring; apply Hreck
- | rewrite S_INR; ring ].
+Proof.
+ intros x k; induction k as [| k Hreck].
+ simpl in |- *; ring_simplify (x + 2 * 0 * PI).
+ trivial.
+
+ replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI).
+ rewrite sin_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *.
+ ring_simplify; trivial.
+ rewrite S_INR in |- *; ring.
Qed.
Lemma cos_period : forall (x:R) (k:nat), cos (x + 2 * INR k * PI) = cos x.
-intros x k; induction k as [| k Hreck].
-cut (x + 2 * INR 0 * PI = x); [ intro; rewrite H; reflexivity | ring ].
-replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI);
- [ rewrite cos_plus; rewrite sin_2PI; rewrite cos_2PI; ring; apply Hreck
- | rewrite S_INR; ring ].
+Proof.
+ intros x k; induction k as [| k Hreck].
+ simpl in |- *; ring_simplify (x + 2 * 0 * PI).
+ trivial.
+
+ replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI).
+ rewrite cos_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *.
+ ring_simplify; trivial.
+ rewrite S_INR in |- *; ring.
Qed.
Lemma sin_shift : forall x:R, sin (PI / 2 - x) = cos x.
-intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
+Proof.
+ intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.
Lemma cos_shift : forall x:R, cos (PI / 2 - x) = sin x.
-intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
+Proof.
+ intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.
Lemma cos_sin : forall x:R, cos x = sin (PI / 2 + x).
-intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
+Proof.
+ intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.
Lemma PI2_RGT_0 : 0 < PI / 2.
-unfold Rdiv in |- *; apply Rmult_lt_0_compat;
- [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ].
+Proof.
+ unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ].
Qed.
Lemma SIN_bound : forall x:R, -1 <= sin x <= 1.
-intro; case (Rle_dec (-1) (sin x)); intro.
-case (Rle_dec (sin x) 1); intro.
-split; assumption.
-cut (1 < sin x).
-intro;
- generalize
- (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1)
- (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H)));
- rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0;
- generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
- repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l;
- rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
- generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
- repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
- intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
-auto with real.
-cut (sin x < -1).
-intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H);
- rewrite Ropp_involutive; clear H; intro;
- generalize
- (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1)
- (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H)));
- rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0;
- rewrite sin2 in H0; unfold Rminus in H0;
- generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
- repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l;
- rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
- generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
- repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
- intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
-auto with real.
+Proof.
+ intro; case (Rle_dec (-1) (sin x)); intro.
+ case (Rle_dec (sin x) 1); intro.
+ split; assumption.
+ cut (1 < sin x).
+ intro;
+ generalize
+ (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1)
+ (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H)));
+ rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0;
+ generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
+ repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l;
+ rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
+ generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
+ repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
+ intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
+ auto with real.
+ cut (sin x < -1).
+ intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H);
+ rewrite Ropp_involutive; clear H; intro;
+ generalize
+ (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1)
+ (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H)));
+ rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0;
+ rewrite sin2 in H0; unfold Rminus in H0;
+ generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
+ repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l;
+ rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
+ generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
+ repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
+ intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
+ auto with real.
Qed.
Lemma COS_bound : forall x:R, -1 <= cos x <= 1.
-intro; rewrite <- sin_shift; apply SIN_bound.
+Proof.
+ intro; rewrite <- sin_shift; apply SIN_bound.
Qed.
Lemma cos_sin_0 : forall x:R, ~ (cos x = 0 /\ sin x = 0).
-intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro;
- rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2;
- rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro;
- rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3).
+Proof.
+ intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro;
+ rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2;
+ rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro;
+ rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3).
Qed.
-
+
Lemma cos_sin_0_var : forall x:R, cos x <> 0 \/ sin x <> 0.
-intro; apply not_and_or; apply cos_sin_0.
+Proof.
+ intro; apply not_and_or; apply cos_sin_0.
Qed.
(*****************************************************************)
-(* Using series definitions of cos and sin *)
+(** * Using series definitions of cos and sin *)
(*****************************************************************)
Definition sin_lb (a:R) : R := sin_approx a 3.
@@ -341,1367 +385,1415 @@ Definition cos_lb (a:R) : R := cos_approx a 3.
Definition cos_ub (a:R) : R := cos_approx a 4.
Lemma sin_lb_gt_0 : forall a:R, 0 < a -> a <= PI / 2 -> 0 < sin_lb a.
-intros.
-unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *.
-set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))).
-replace
- (sum_f_R0
+Proof.
+ intros.
+ unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *.
+ set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))).
+ replace
+ (sum_f_R0
(fun i:nat => (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1)))) 3)
- with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3);
- [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ].
-cut (forall n:nat, Un (S n) < Un n).
-intro; simpl in |- *.
-repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r;
- replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ];
- replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ];
- replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat);
- [ idtac | ring ];
- replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with
- (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ].
-apply Rplus_lt_0_compat.
-unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 1%nat);
- rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat));
- rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
- apply H1.
-unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 3%nat);
- rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat));
- rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
- apply H1.
-intro; unfold Un in |- *.
-cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat).
-intro; rewrite H1.
-rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc;
- apply Rmult_lt_compat_l.
-apply pow_lt; assumption.
-rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))).
-apply lt_INR_0; apply neq_O_lt.
-assert (H2 := fact_neq_0 (2 * n + 1)).
-red in |- *; intro; elim H2; symmetry in |- *; assumption.
-rewrite <- Rinv_r_sym.
-apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))).
-apply lt_INR_0; apply neq_O_lt.
-assert (H2 := fact_neq_0 (2 * S n + 1)).
-red in |- *; intro; elim H2; symmetry in |- *; assumption.
-rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc;
- rewrite <- Rinv_l_sym.
-do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4).
-apply Rmult_le_compat_l.
-replace 0 with (INR 0); [ idtac | reflexivity ]; apply le_INR; apply le_O_n.
-simpl in |- *; rewrite Rmult_1_r; replace 4 with (Rsqr 2);
- [ idtac | ring_Rsqr ]; replace (a * a) with (Rsqr a);
- [ idtac | reflexivity ]; apply Rsqr_incr_1.
-apply Rle_trans with (PI / 2);
- [ assumption
- | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2;
- [ prove_sup0
- | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m;
- [ replace 4 with 4; [ apply PI_4 | ring ] | discrR ] ] ].
-left; assumption.
-left; prove_sup0.
-rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))).
-do 2 rewrite fact_simpl; do 2 rewrite mult_INR.
-repeat rewrite <- Rmult_assoc.
-rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))).
-rewrite Rmult_assoc.
-apply Rmult_lt_compat_l.
-apply lt_INR_0; apply neq_O_lt.
-assert (H2 := fact_neq_0 (2 * n + 1)).
-red in |- *; intro; elim H2; symmetry in |- *; assumption.
-do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n);
- unfold INR in |- *.
-replace ((2 * x + 1 + 1 + 1) * (2 * x + 1 + 1)) with (4 * x * x + 10 * x + 6);
- [ idtac | ring ].
-apply Rplus_lt_reg_r with (-4); rewrite Rplus_opp_l;
- replace (-4 + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2);
- [ idtac | ring ].
-apply Rplus_le_lt_0_compat.
-cut (0 <= x).
-intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos;
- assumption || left; prove_sup.
-unfold x in |- *; replace 0 with (INR 0);
- [ apply le_INR; apply le_O_n | reflexivity ].
-prove_sup0.
-apply INR_eq; do 2 rewrite S_INR; do 3 rewrite plus_INR; rewrite mult_INR;
- repeat rewrite S_INR; ring.
-apply INR_fact_neq_0.
-apply INR_fact_neq_0.
-apply INR_eq; do 3 rewrite plus_INR; do 2 rewrite mult_INR;
- repeat rewrite S_INR; ring.
+ with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3);
+ [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ].
+ cut (forall n:nat, Un (S n) < Un n).
+ intro; simpl in |- *.
+ repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r;
+ replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ];
+ replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ];
+ replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat);
+ [ idtac | ring ];
+ replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with
+ (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ].
+ apply Rplus_lt_0_compat.
+ unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 1%nat);
+ rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat));
+ rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
+ apply H1.
+ unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 3%nat);
+ rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat));
+ rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
+ apply H1.
+ intro; unfold Un in |- *.
+ cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat).
+ intro; rewrite H1.
+ rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc;
+ apply Rmult_lt_compat_l.
+ apply pow_lt; assumption.
+ rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))).
+ apply lt_INR_0; apply neq_O_lt.
+ assert (H2 := fact_neq_0 (2 * n + 1)).
+ red in |- *; intro; elim H2; symmetry in |- *; assumption.
+ rewrite <- Rinv_r_sym.
+ apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))).
+ apply lt_INR_0; apply neq_O_lt.
+ assert (H2 := fact_neq_0 (2 * S n + 1)).
+ red in |- *; intro; elim H2; symmetry in |- *; assumption.
+ rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym.
+ do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4).
+ apply Rmult_le_compat_l.
+ replace 0 with (INR 0); [ idtac | reflexivity ]; apply le_INR; apply le_O_n.
+ simpl in |- *; rewrite Rmult_1_r; replace 4 with (Rsqr 2);
+ [ idtac | ring_Rsqr ]; replace (a * a) with (Rsqr a);
+ [ idtac | reflexivity ]; apply Rsqr_incr_1.
+ apply Rle_trans with (PI / 2);
+ [ assumption
+ | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2;
+ [ prove_sup0
+ | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m;
+ [ replace 4 with 4; [ apply PI_4 | ring ] | discrR ] ] ].
+ left; assumption.
+ left; prove_sup0.
+ rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))).
+ do 2 rewrite fact_simpl; do 2 rewrite mult_INR.
+ repeat rewrite <- Rmult_assoc.
+ rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))).
+ rewrite Rmult_assoc.
+ apply Rmult_lt_compat_l.
+ apply lt_INR_0; apply neq_O_lt.
+ assert (H2 := fact_neq_0 (2 * n + 1)).
+ red in |- *; intro; elim H2; symmetry in |- *; assumption.
+ do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n);
+ unfold INR in |- *.
+ replace ((2 * x + 1 + 1 + 1) * (2 * x + 1 + 1)) with (4 * x * x + 10 * x + 6);
+ [ idtac | ring ].
+ apply Rplus_lt_reg_r with (-4); rewrite Rplus_opp_l;
+ replace (-4 + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2);
+ [ idtac | ring ].
+ apply Rplus_le_lt_0_compat.
+ cut (0 <= x).
+ intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos;
+ assumption || left; prove_sup.
+ unfold x in |- *; replace 0 with (INR 0);
+ [ apply le_INR; apply le_O_n | reflexivity ].
+ prove_sup0.
+ ring_nat.
+ apply INR_fact_neq_0.
+ apply INR_fact_neq_0.
+ ring_nat.
Qed.
Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a.
-intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0).
+ intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0).
Qed.
Lemma COS :
- forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a.
-intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0).
+ forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a.
+ intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0).
Qed.
(**********)
Lemma _PI2_RLT_0 : - (PI / 2) < 0.
-rewrite <- Ropp_0; apply Ropp_lt_contravar; apply PI2_RGT_0.
+Proof.
+ rewrite <- Ropp_0; apply Ropp_lt_contravar; apply PI2_RGT_0.
Qed.
Lemma PI4_RLT_PI2 : PI / 4 < PI / 2.
-unfold Rdiv in |- *; apply Rmult_lt_compat_l.
-apply PI_RGT_0.
-apply Rinv_lt_contravar.
-apply Rmult_lt_0_compat; prove_sup0.
-pattern 2 at 1 in |- *; rewrite <- Rplus_0_r.
-replace 4 with (2 + 2); [ apply Rplus_lt_compat_l; prove_sup0 | ring ].
+Proof.
+ unfold Rdiv in |- *; apply Rmult_lt_compat_l.
+ apply PI_RGT_0.
+ apply Rinv_lt_contravar.
+ apply Rmult_lt_0_compat; prove_sup0.
+ pattern 2 at 1 in |- *; rewrite <- Rplus_0_r.
+ replace 4 with (2 + 2); [ apply Rplus_lt_compat_l; prove_sup0 | ring ].
Qed.
Lemma PI2_Rlt_PI : PI / 2 < PI.
-unfold Rdiv in |- *; pattern PI at 2 in |- *; rewrite <- Rmult_1_r.
-apply Rmult_lt_compat_l.
-apply PI_RGT_0.
-pattern 1 at 3 in |- *; rewrite <- Rinv_1; apply Rinv_lt_contravar.
-rewrite Rmult_1_l; prove_sup0.
-pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
- apply Rlt_0_1.
-Qed.
-
-(********************************************)
-(* Increasing and decreasing of COS and SIN *)
-(********************************************)
+Proof.
+ unfold Rdiv in |- *; pattern PI at 2 in |- *; rewrite <- Rmult_1_r.
+ apply Rmult_lt_compat_l.
+ apply PI_RGT_0.
+ pattern 1 at 3 in |- *; rewrite <- Rinv_1; apply Rinv_lt_contravar.
+ rewrite Rmult_1_l; prove_sup0.
+ pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ apply Rlt_0_1.
+Qed.
+
+(***************************************************)
+(** * Increasing and decreasing of [cos] and [sin] *)
+(***************************************************)
Theorem sin_gt_0 : forall x:R, 0 < x -> x < PI -> 0 < sin x.
-intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _;
- case (Rtotal_order x (PI / 2)); intro H2.
-apply Rlt_le_trans with (sin_lb x).
-apply sin_lb_gt_0; [ assumption | left; assumption ].
-assumption.
-elim H2; intro H3.
-rewrite H3; rewrite sin_PI2; apply Rlt_0_1.
-rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3);
- intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4).
-replace (PI + - x) with (PI - x).
-replace (PI + - (PI / 2)) with (PI / 2).
-intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6;
- change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6).
-rewrite Rplus_opp_r.
-replace (PI + - x) with (PI - x).
-intro H7;
- elim
- (SIN (PI - x) (Rlt_le 0 (PI - x) H7)
- (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI)));
- intros H8 _;
- generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5));
- intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8).
-reflexivity.
-pattern PI at 2 in |- *; rewrite double_var; ring.
-reflexivity.
+Proof.
+ intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _;
+ case (Rtotal_order x (PI / 2)); intro H2.
+ apply Rlt_le_trans with (sin_lb x).
+ apply sin_lb_gt_0; [ assumption | left; assumption ].
+ assumption.
+ elim H2; intro H3.
+ rewrite H3; rewrite sin_PI2; apply Rlt_0_1.
+ rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3);
+ intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4).
+ replace (PI + - x) with (PI - x).
+ replace (PI + - (PI / 2)) with (PI / 2).
+ intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6;
+ change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6).
+ rewrite Rplus_opp_r.
+ replace (PI + - x) with (PI - x).
+ intro H7;
+ elim
+ (SIN (PI - x) (Rlt_le 0 (PI - x) H7)
+ (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI)));
+ intros H8 _;
+ generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5));
+ intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8).
+ reflexivity.
+ pattern PI at 2 in |- *; rewrite double_var; ring.
+ reflexivity.
Qed.
Theorem cos_gt_0 : forall x:R, - (PI / 2) < x -> x < PI / 2 -> 0 < cos x.
-intros; rewrite cos_sin;
- generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H).
-rewrite Rplus_opp_r; intro H1;
- generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0);
- rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2).
+Proof.
+ intros; rewrite cos_sin;
+ generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H).
+ rewrite Rplus_opp_r; intro H1;
+ generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0);
+ rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2).
Qed.
Lemma sin_ge_0 : forall x:R, 0 <= x -> x <= PI -> 0 <= sin x.
-intros x H1 H2; elim H1; intro H3;
- [ elim H2; intro H4;
- [ left; apply (sin_gt_0 x H3 H4)
- | rewrite H4; right; symmetry in |- *; apply sin_PI ]
- | rewrite <- H3; right; symmetry in |- *; apply sin_0 ].
+Proof.
+ intros x H1 H2; elim H1; intro H3;
+ [ elim H2; intro H4;
+ [ left; apply (sin_gt_0 x H3 H4)
+ | rewrite H4; right; symmetry in |- *; apply sin_PI ]
+ | rewrite <- H3; right; symmetry in |- *; apply sin_0 ].
Qed.
Lemma cos_ge_0 : forall x:R, - (PI / 2) <= x -> x <= PI / 2 -> 0 <= cos x.
-intros x H1 H2; elim H1; intro H3;
- [ elim H2; intro H4;
- [ left; apply (cos_gt_0 x H3 H4)
- | rewrite H4; right; symmetry in |- *; apply cos_PI2 ]
- | rewrite <- H3; rewrite cos_neg; right; symmetry in |- *; apply cos_PI2 ].
+Proof.
+ intros x H1 H2; elim H1; intro H3;
+ [ elim H2; intro H4;
+ [ left; apply (cos_gt_0 x H3 H4)
+ | rewrite H4; right; symmetry in |- *; apply cos_PI2 ]
+ | rewrite <- H3; rewrite cos_neg; right; symmetry in |- *; apply cos_PI2 ].
Qed.
Lemma sin_le_0 : forall x:R, PI <= x -> x <= 2 * PI -> sin x <= 0.
-intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
- rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar;
- rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI);
- [ rewrite (sin_period (x - PI) 1); apply sin_ge_0;
- [ replace (x - PI) with (x + - PI);
- [ rewrite Rplus_comm; replace 0 with (- PI + PI);
- [ apply Rplus_le_compat_l; assumption | ring ]
- | ring ]
- | replace (x - PI) with (x + - PI); rewrite Rplus_comm;
- [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
- [ apply Rplus_le_compat_l; assumption | ring ]
- | ring ] ]
- | unfold INR in |- *; ring ].
+Proof.
+ intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
+ rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar;
+ rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI);
+ [ rewrite (sin_period (x - PI) 1); apply sin_ge_0;
+ [ replace (x - PI) with (x + - PI);
+ [ rewrite Rplus_comm; replace 0 with (- PI + PI);
+ [ apply Rplus_le_compat_l; assumption | ring ]
+ | ring ]
+ | replace (x - PI) with (x + - PI); rewrite Rplus_comm;
+ [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
+ [ apply Rplus_le_compat_l; assumption | ring ]
+ | ring ] ]
+ | unfold INR in |- *; ring ].
Qed.
Lemma cos_le_0 : forall x:R, PI / 2 <= x -> x <= 3 * (PI / 2) -> cos x <= 0.
-intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
- rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar;
- rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI).
-rewrite cos_period; apply cos_ge_0.
-replace (- (PI / 2)) with (- PI + PI / 2).
-unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l;
- assumption.
-pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
- ring.
-unfold Rminus in |- *; rewrite Rplus_comm;
- replace (PI / 2) with (- PI + 3 * (PI / 2)).
-apply Rplus_le_compat_l; assumption.
-pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
- ring.
-unfold INR in |- *; ring.
+Proof.
+ intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
+ rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar;
+ rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI).
+ rewrite cos_period; apply cos_ge_0.
+ replace (- (PI / 2)) with (- PI + PI / 2).
+ unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l;
+ assumption.
+ pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
+ ring.
+ unfold Rminus in |- *; rewrite Rplus_comm;
+ replace (PI / 2) with (- PI + 3 * (PI / 2)).
+ apply Rplus_le_compat_l; assumption.
+ pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
+ ring.
+ unfold INR in |- *; ring.
Qed.
Lemma sin_lt_0 : forall x:R, PI < x -> x < 2 * PI -> sin x < 0.
-intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x));
- apply Ropp_lt_gt_contravar; rewrite <- neg_sin;
- replace (x + PI) with (x - PI + 2 * INR 1 * PI);
- [ rewrite (sin_period (x - PI) 1); apply sin_gt_0;
- [ replace (x - PI) with (x + - PI);
- [ rewrite Rplus_comm; replace 0 with (- PI + PI);
- [ apply Rplus_lt_compat_l; assumption | ring ]
- | ring ]
- | replace (x - PI) with (x + - PI); rewrite Rplus_comm;
- [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
- [ apply Rplus_lt_compat_l; assumption | ring ]
- | ring ] ]
- | unfold INR in |- *; ring ].
+Proof.
+ intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x));
+ apply Ropp_lt_gt_contravar; rewrite <- neg_sin;
+ replace (x + PI) with (x - PI + 2 * INR 1 * PI);
+ [ rewrite (sin_period (x - PI) 1); apply sin_gt_0;
+ [ replace (x - PI) with (x + - PI);
+ [ rewrite Rplus_comm; replace 0 with (- PI + PI);
+ [ apply Rplus_lt_compat_l; assumption | ring ]
+ | ring ]
+ | replace (x - PI) with (x + - PI); rewrite Rplus_comm;
+ [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
+ [ apply Rplus_lt_compat_l; assumption | ring ]
+ | ring ] ]
+ | unfold INR in |- *; ring ].
Qed.
Lemma sin_lt_0_var : forall x:R, - PI < x -> x < 0 -> sin x < 0.
-intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H);
- replace (2 * PI + - PI) with PI;
- [ intro H1; rewrite Rplus_comm in H1;
- generalize (Rplus_lt_compat_l (2 * PI) x 0 H0);
- intro H2; rewrite (Rplus_comm (2 * PI)) in H2;
- rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2;
- rewrite <- (sin_period x 1); unfold INR in |- *;
- replace (2 * 1 * PI) with (2 * PI);
- [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ]
- | ring ].
+Proof.
+ intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H);
+ replace (2 * PI + - PI) with PI;
+ [ intro H1; rewrite Rplus_comm in H1;
+ generalize (Rplus_lt_compat_l (2 * PI) x 0 H0);
+ intro H2; rewrite (Rplus_comm (2 * PI)) in H2;
+ rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2;
+ rewrite <- (sin_period x 1); unfold INR in |- *;
+ replace (2 * 1 * PI) with (2 * PI);
+ [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ]
+ | ring ].
Qed.
Lemma cos_lt_0 : forall x:R, PI / 2 < x -> x < 3 * (PI / 2) -> cos x < 0.
-intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x));
- apply Ropp_lt_gt_contravar; rewrite <- neg_cos;
- replace (x + PI) with (x - PI + 2 * INR 1 * PI).
-rewrite cos_period; apply cos_gt_0.
-replace (- (PI / 2)) with (- PI + PI / 2).
-unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l;
- assumption.
-pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
- ring.
-unfold Rminus in |- *; rewrite Rplus_comm;
- replace (PI / 2) with (- PI + 3 * (PI / 2)).
-apply Rplus_lt_compat_l; assumption.
-pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
- ring.
-unfold INR in |- *; ring.
+Proof.
+ intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x));
+ apply Ropp_lt_gt_contravar; rewrite <- neg_cos;
+ replace (x + PI) with (x - PI + 2 * INR 1 * PI).
+ rewrite cos_period; apply cos_gt_0.
+ replace (- (PI / 2)) with (- PI + PI / 2).
+ unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l;
+ assumption.
+ pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
+ ring.
+ unfold Rminus in |- *; rewrite Rplus_comm;
+ replace (PI / 2) with (- PI + 3 * (PI / 2)).
+ apply Rplus_lt_compat_l; assumption.
+ pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr;
+ ring.
+ unfold INR in |- *; ring.
Qed.
Lemma tan_gt_0 : forall x:R, 0 < x -> x < PI / 2 -> 0 < tan x.
-intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0;
- generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros;
- generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5;
- generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI);
- intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
-apply sin_gt_0; assumption.
-apply Rinv_0_lt_compat; apply cos_gt_0; assumption.
+Proof.
+ intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0;
+ generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros;
+ generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5;
+ generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI);
+ intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ apply sin_gt_0; assumption.
+ apply Rinv_0_lt_compat; apply cos_gt_0; assumption.
Qed.
Lemma tan_lt_0 : forall x:R, - (PI / 2) < x -> x < 0 -> tan x < 0.
-intros x H1 H2; unfold tan in |- *;
- generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0));
- intro H3; rewrite <- Ropp_0;
- replace (sin x / cos x) with (- (- sin x / cos x)).
-rewrite <- sin_neg; apply Ropp_gt_lt_contravar;
- change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *;
- apply Rmult_lt_0_compat.
-apply sin_gt_0.
-rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption.
-apply Rlt_trans with (PI / 2).
-rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption.
-apply PI2_Rlt_PI.
-apply Rinv_0_lt_compat; assumption.
-unfold Rdiv in |- *; ring.
+Proof.
+ intros x H1 H2; unfold tan in |- *;
+ generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0));
+ intro H3; rewrite <- Ropp_0;
+ replace (sin x / cos x) with (- (- sin x / cos x)).
+ rewrite <- sin_neg; apply Ropp_gt_lt_contravar;
+ change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *;
+ apply Rmult_lt_0_compat.
+ apply sin_gt_0.
+ rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption.
+ apply Rlt_trans with (PI / 2).
+ rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption.
+ apply PI2_Rlt_PI.
+ apply Rinv_0_lt_compat; assumption.
+ unfold Rdiv in |- *; ring.
Qed.
Lemma cos_ge_0_3PI2 :
- forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x.
-intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1);
- unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x).
-generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1;
- generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1;
- intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1).
-rewrite Rplus_opp_r.
-intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3;
- generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3;
- intro H3;
- generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3).
-replace (2 * PI + - (3 * (PI / 2))) with (PI / 2).
-intro H4;
- apply
- (cos_ge_0 (2 * PI - x)
- (Rlt_le (- (PI / 2)) (2 * PI - x)
- (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4).
-rewrite double; pattern PI at 2 3 in |- *; rewrite double_var; ring.
-ring.
+ forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x.
+Proof.
+ intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1);
+ unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x).
+ generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1;
+ generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1;
+ intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1).
+ rewrite Rplus_opp_r.
+ intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3;
+ generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3;
+ intro H3;
+ generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3).
+ replace (2 * PI + - (3 * (PI / 2))) with (PI / 2).
+ intro H4;
+ apply
+ (cos_ge_0 (2 * PI - x)
+ (Rlt_le (- (PI / 2)) (2 * PI - x)
+ (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4).
+ rewrite double; pattern PI at 2 3 in |- *; rewrite double_var; ring.
+ ring.
Qed.
Lemma form1 :
- forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2).
-intros p q; pattern p at 1 in |- *;
- replace p with ((p - q) / 2 + (p + q) / 2).
-rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2).
-rewrite cos_plus; rewrite cos_minus; ring.
-pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
-pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
+ forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2).
+Proof.
+ intros p q; pattern p at 1 in |- *;
+ replace p with ((p - q) / 2 + (p + q) / 2).
+ rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2).
+ rewrite cos_plus; rewrite cos_minus; ring.
+ pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
+ pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.
Lemma form2 :
- forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2).
-intros p q; pattern p at 1 in |- *;
- replace p with ((p - q) / 2 + (p + q) / 2).
-rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2).
-rewrite cos_plus; rewrite cos_minus; ring.
-pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
-pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
+ forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2).
+Proof.
+ intros p q; pattern p at 1 in |- *;
+ replace p with ((p - q) / 2 + (p + q) / 2).
+ rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2).
+ rewrite cos_plus; rewrite cos_minus; ring.
+ pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
+ pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.
Lemma form3 :
- forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2).
-intros p q; pattern p at 1 in |- *;
- replace p with ((p - q) / 2 + (p + q) / 2).
-pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2).
-rewrite sin_plus; rewrite sin_minus; ring.
-pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
-pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
+ forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2).
+Proof.
+ intros p q; pattern p at 1 in |- *;
+ replace p with ((p - q) / 2 + (p + q) / 2).
+ pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2).
+ rewrite sin_plus; rewrite sin_minus; ring.
+ pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
+ pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.
Lemma form4 :
- forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2).
-intros p q; pattern p at 1 in |- *;
- replace p with ((p - q) / 2 + (p + q) / 2).
-pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2).
-rewrite sin_plus; rewrite sin_minus; ring.
-pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
-pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
+ forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2).
+Proof.
+ intros p q; pattern p at 1 in |- *;
+ replace p with ((p - q) / 2 + (p + q) / 2).
+ pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2).
+ rewrite sin_plus; rewrite sin_minus; ring.
+ pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
+ pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.
Lemma sin_increasing_0 :
- forall x y:R,
- - (PI / 2) <= x ->
- x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y.
-intros; cut (sin ((x - y) / 2) < 0).
-intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5.
-assert (Hyp : 0 < 2).
-prove_sup0.
-generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5).
-unfold Rdiv in |- *.
-rewrite <- Rmult_assoc.
-rewrite Rinv_r_simpl_m.
-rewrite Rmult_0_r.
-clear H5; intro H5; apply Rminus_lt; assumption.
-discrR.
-elim H5; intro H6.
-rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4).
-change (0 < (x - y) / 2) in H6;
- generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1).
-rewrite Ropp_involutive.
-intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7;
- generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7).
-rewrite <- double_var.
-intro H8.
-assert (Hyp : 0 < 2).
-prove_sup0.
-generalize
- (Rmult_le_compat_l (/ 2) (x - y) PI
- (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8).
-repeat rewrite (Rmult_comm (/ 2)).
-intro H9;
- generalize
- (sin_gt_0 ((x - y) / 2) H6
- (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI));
- intro H10;
- elim
- (Rlt_irrefl (sin ((x - y) / 2))
- (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)).
-generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3;
- rewrite form4 in H3;
- generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2).
-rewrite <- double_var.
-assert (Hyp : 0 < 2).
-prove_sup0.
-intro H4;
- generalize
- (Rmult_le_compat_l (/ 2) (x + y) PI
- (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4).
-repeat rewrite (Rmult_comm (/ 2)).
-clear H4; intro H4;
- generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1);
- replace (- (PI / 2) + - (PI / 2)) with (- PI).
-intro H5;
- generalize
- (Rmult_le_compat_l (/ 2) (- PI) (x + y)
- (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5).
-replace (/ 2 * (x + y)) with ((x + y) / 2).
-replace (/ 2 * - PI) with (- (PI / 2)).
-clear H5; intro H5; elim H4; intro H40.
-elim H5; intro H50.
-generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6;
- generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6).
-rewrite Rmult_0_r.
-clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7.
-assumption.
-generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7;
- generalize
- (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2))
- (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8;
- generalize
- (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3);
- intro H9; elim (Rlt_irrefl 0 H9).
-rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3;
- rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
- elim (Rlt_irrefl 0 H3).
-unfold Rdiv in H3.
-rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50;
- rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
- elim (Rlt_irrefl 0 H3).
-unfold Rdiv in |- *.
-rewrite <- Ropp_mult_distr_l_reverse.
-apply Rmult_comm.
-unfold Rdiv in |- *; apply Rmult_comm.
-pattern PI at 1 in |- *; rewrite double_var.
-rewrite Ropp_plus_distr.
-reflexivity.
+ forall x y:R,
+ - (PI / 2) <= x ->
+ x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y.
+Proof.
+ intros; cut (sin ((x - y) / 2) < 0).
+ intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5.
+ assert (Hyp : 0 < 2).
+ prove_sup0.
+ generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5).
+ unfold Rdiv in |- *.
+ rewrite <- Rmult_assoc.
+ rewrite Rinv_r_simpl_m.
+ rewrite Rmult_0_r.
+ clear H5; intro H5; apply Rminus_lt; assumption.
+ discrR.
+ elim H5; intro H6.
+ rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4).
+ change (0 < (x - y) / 2) in H6;
+ generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1).
+ rewrite Ropp_involutive.
+ intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7;
+ generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7).
+ rewrite <- double_var.
+ intro H8.
+ assert (Hyp : 0 < 2).
+ prove_sup0.
+ generalize
+ (Rmult_le_compat_l (/ 2) (x - y) PI
+ (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8).
+ repeat rewrite (Rmult_comm (/ 2)).
+ intro H9;
+ generalize
+ (sin_gt_0 ((x - y) / 2) H6
+ (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI));
+ intro H10;
+ elim
+ (Rlt_irrefl (sin ((x - y) / 2))
+ (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)).
+ generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3;
+ rewrite form4 in H3;
+ generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2).
+ rewrite <- double_var.
+ assert (Hyp : 0 < 2).
+ prove_sup0.
+ intro H4;
+ generalize
+ (Rmult_le_compat_l (/ 2) (x + y) PI
+ (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4).
+ repeat rewrite (Rmult_comm (/ 2)).
+ clear H4; intro H4;
+ generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1);
+ replace (- (PI / 2) + - (PI / 2)) with (- PI).
+ intro H5;
+ generalize
+ (Rmult_le_compat_l (/ 2) (- PI) (x + y)
+ (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5).
+ replace (/ 2 * (x + y)) with ((x + y) / 2).
+ replace (/ 2 * - PI) with (- (PI / 2)).
+ clear H5; intro H5; elim H4; intro H40.
+ elim H5; intro H50.
+ generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6;
+ generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6).
+ rewrite Rmult_0_r.
+ clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7.
+ assumption.
+ generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7;
+ generalize
+ (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2))
+ (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8;
+ generalize
+ (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3);
+ intro H9; elim (Rlt_irrefl 0 H9).
+ rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3;
+ rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
+ elim (Rlt_irrefl 0 H3).
+ unfold Rdiv in H3.
+ rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50;
+ rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
+ elim (Rlt_irrefl 0 H3).
+ unfold Rdiv in |- *.
+ rewrite <- Ropp_mult_distr_l_reverse.
+ apply Rmult_comm.
+ unfold Rdiv in |- *; apply Rmult_comm.
+ pattern PI at 1 in |- *; rewrite double_var.
+ rewrite Ropp_plus_distr.
+ reflexivity.
Qed.
Lemma sin_increasing_1 :
- forall x y:R,
- - (PI / 2) <= x ->
- x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y.
-intros; generalize (Rplus_lt_compat_l x x y H3); intro H4;
- generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H);
- replace (- (PI / 2) + - (PI / 2)) with (- PI).
-assert (Hyp : 0 < 2).
-prove_sup0.
-intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6;
- generalize
- (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6);
- replace (/ 2 * - PI) with (- (PI / 2)).
-replace (/ 2 * (x + y)) with ((x + y) / 2).
-clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5;
- rewrite Rplus_comm in H5;
- generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2).
-rewrite <- double_var.
-intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7;
- generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7);
- replace (/ 2 * PI) with (PI / 2).
-replace (/ 2 * (x + y)) with ((x + y) / 2).
-clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1);
- rewrite Ropp_involutive; clear H1; intro H1;
- generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1;
- generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2;
- intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2);
- clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3);
- replace (- y + x) with (x - y).
-rewrite Rplus_opp_l.
-intro H6;
- generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6);
- rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2).
-clear H6; intro H6;
- generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2);
- replace (- (PI / 2) + - (PI / 2)) with (- PI).
-replace (x + - y) with (x - y).
-intro H7;
- generalize
- (Rmult_le_compat_l (/ 2) (- PI) (x - y)
- (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7);
- replace (/ 2 * - PI) with (- (PI / 2)).
-replace (/ 2 * (x - y)) with ((x - y) / 2).
-clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4;
- generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8;
- generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8);
- clear H8; intro H8; cut (- PI < - (PI / 2)).
-intro H9;
- generalize
- (sin_lt_0_var ((x - y) / 2)
- (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6);
- intro H10;
- generalize
- (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 (
- 2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11;
- rewrite Rmult_comm; assumption.
-apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI.
-unfold Rdiv in |- *; apply Rmult_comm.
-unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_comm.
-reflexivity.
-pattern PI at 1 in |- *; rewrite double_var.
-rewrite Ropp_plus_distr.
-reflexivity.
-unfold Rdiv in |- *; apply Rmult_comm.
-unfold Rminus in |- *; apply Rplus_comm.
-unfold Rdiv in |- *; apply Rmult_comm.
-unfold Rdiv in |- *; apply Rmult_comm.
-unfold Rdiv in |- *; apply Rmult_comm.
-unfold Rdiv in |- *.
-rewrite <- Ropp_mult_distr_l_reverse.
-apply Rmult_comm.
-pattern PI at 1 in |- *; rewrite double_var.
-rewrite Ropp_plus_distr.
-reflexivity.
+ forall x y:R,
+ - (PI / 2) <= x ->
+ x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y.
+Proof.
+ intros; generalize (Rplus_lt_compat_l x x y H3); intro H4;
+ generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H);
+ replace (- (PI / 2) + - (PI / 2)) with (- PI).
+ assert (Hyp : 0 < 2).
+ prove_sup0.
+ intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6;
+ generalize
+ (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6);
+ replace (/ 2 * - PI) with (- (PI / 2)).
+ replace (/ 2 * (x + y)) with ((x + y) / 2).
+ clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5;
+ rewrite Rplus_comm in H5;
+ generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2).
+ rewrite <- double_var.
+ intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7;
+ generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7);
+ replace (/ 2 * PI) with (PI / 2).
+ replace (/ 2 * (x + y)) with ((x + y) / 2).
+ clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1);
+ rewrite Ropp_involutive; clear H1; intro H1;
+ generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1;
+ generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2;
+ intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2);
+ clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3);
+ replace (- y + x) with (x - y).
+ rewrite Rplus_opp_l.
+ intro H6;
+ generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6);
+ rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2).
+ clear H6; intro H6;
+ generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2);
+ replace (- (PI / 2) + - (PI / 2)) with (- PI).
+ replace (x + - y) with (x - y).
+ intro H7;
+ generalize
+ (Rmult_le_compat_l (/ 2) (- PI) (x - y)
+ (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7);
+ replace (/ 2 * - PI) with (- (PI / 2)).
+ replace (/ 2 * (x - y)) with ((x - y) / 2).
+ clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4;
+ generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8;
+ generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8);
+ clear H8; intro H8; cut (- PI < - (PI / 2)).
+ intro H9;
+ generalize
+ (sin_lt_0_var ((x - y) / 2)
+ (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6);
+ intro H10;
+ generalize
+ (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 (
+ 2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11;
+ rewrite Rmult_comm; assumption.
+ apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI.
+ unfold Rdiv in |- *; apply Rmult_comm.
+ unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_comm.
+ reflexivity.
+ pattern PI at 1 in |- *; rewrite double_var.
+ rewrite Ropp_plus_distr.
+ reflexivity.
+ unfold Rdiv in |- *; apply Rmult_comm.
+ unfold Rminus in |- *; apply Rplus_comm.
+ unfold Rdiv in |- *; apply Rmult_comm.
+ unfold Rdiv in |- *; apply Rmult_comm.
+ unfold Rdiv in |- *; apply Rmult_comm.
+ unfold Rdiv in |- *.
+ rewrite <- Ropp_mult_distr_l_reverse.
+ apply Rmult_comm.
+ pattern PI at 1 in |- *; rewrite double_var.
+ rewrite Ropp_plus_distr.
+ reflexivity.
Qed.
Lemma sin_decreasing_0 :
- forall x y:R,
- x <= 3 * (PI / 2) ->
- PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x.
-intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3;
- generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3);
- repeat rewrite <- sin_neg;
- generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
- generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
- generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
- generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
- replace (- PI + x) with (x - PI).
-replace (- PI + PI / 2) with (- (PI / 2)).
-replace (- PI + y) with (y - PI).
-replace (- PI + 3 * (PI / 2)) with (PI / 2).
-replace (- (PI - x)) with (x - PI).
-replace (- (PI - y)) with (y - PI).
-intros; change (sin (y - PI) < sin (x - PI)) in H8;
- apply Rplus_lt_reg_r with (- PI); rewrite Rplus_comm;
- replace (y + - PI) with (y - PI).
-rewrite Rplus_comm; replace (x + - PI) with (x - PI).
-apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8).
-reflexivity.
-reflexivity.
-unfold Rminus in |- *; rewrite Ropp_plus_distr.
-rewrite Ropp_involutive.
-apply Rplus_comm.
-unfold Rminus in |- *; rewrite Ropp_plus_distr.
-rewrite Ropp_involutive.
-apply Rplus_comm.
-pattern PI at 2 in |- *; rewrite double_var.
-rewrite Ropp_plus_distr.
-ring.
-unfold Rminus in |- *; apply Rplus_comm.
-pattern PI at 2 in |- *; rewrite double_var.
-rewrite Ropp_plus_distr.
-ring.
-unfold Rminus in |- *; apply Rplus_comm.
+ forall x y:R,
+ x <= 3 * (PI / 2) ->
+ PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x.
+Proof.
+ intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3;
+ generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3);
+ repeat rewrite <- sin_neg;
+ generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
+ generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
+ generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
+ generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
+ replace (- PI + x) with (x - PI).
+ replace (- PI + PI / 2) with (- (PI / 2)).
+ replace (- PI + y) with (y - PI).
+ replace (- PI + 3 * (PI / 2)) with (PI / 2).
+ replace (- (PI - x)) with (x - PI).
+ replace (- (PI - y)) with (y - PI).
+ intros; change (sin (y - PI) < sin (x - PI)) in H8;
+ apply Rplus_lt_reg_r with (- PI); rewrite Rplus_comm;
+ replace (y + - PI) with (y - PI).
+ rewrite Rplus_comm; replace (x + - PI) with (x - PI).
+ apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8).
+ reflexivity.
+ reflexivity.
+ unfold Rminus in |- *; rewrite Ropp_plus_distr.
+ rewrite Ropp_involutive.
+ apply Rplus_comm.
+ unfold Rminus in |- *; rewrite Ropp_plus_distr.
+ rewrite Ropp_involutive.
+ apply Rplus_comm.
+ pattern PI at 2 in |- *; rewrite double_var.
+ rewrite Ropp_plus_distr.
+ ring.
+ unfold Rminus in |- *; apply Rplus_comm.
+ pattern PI at 2 in |- *; rewrite double_var.
+ rewrite Ropp_plus_distr.
+ ring.
+ unfold Rminus in |- *; apply Rplus_comm.
Qed.
Lemma sin_decreasing_1 :
- forall x y:R,
- x <= 3 * (PI / 2) ->
- PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x.
-intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y);
- generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
- generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
- generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
- generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
- generalize (Rplus_lt_compat_l (- PI) x y H3);
- replace (- PI + PI / 2) with (- (PI / 2)).
-replace (- PI + y) with (y - PI).
-replace (- PI + 3 * (PI / 2)) with (PI / 2).
-replace (- PI + x) with (x - PI).
-intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg;
- replace (- (PI - x)) with (x - PI).
-replace (- (PI - y)) with (y - PI).
-apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4).
-unfold Rminus in |- *; rewrite Ropp_plus_distr.
-rewrite Ropp_involutive.
-apply Rplus_comm.
-unfold Rminus in |- *; rewrite Ropp_plus_distr.
-rewrite Ropp_involutive.
-apply Rplus_comm.
-unfold Rminus in |- *; apply Rplus_comm.
-pattern PI at 2 in |- *; rewrite double_var; ring.
-unfold Rminus in |- *; apply Rplus_comm.
-pattern PI at 2 in |- *; rewrite double_var; ring.
+ forall x y:R,
+ x <= 3 * (PI / 2) ->
+ PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x.
+Proof.
+ intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y);
+ generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
+ generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
+ generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
+ generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
+ generalize (Rplus_lt_compat_l (- PI) x y H3);
+ replace (- PI + PI / 2) with (- (PI / 2)).
+ replace (- PI + y) with (y - PI).
+ replace (- PI + 3 * (PI / 2)) with (PI / 2).
+ replace (- PI + x) with (x - PI).
+ intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg;
+ replace (- (PI - x)) with (x - PI).
+ replace (- (PI - y)) with (y - PI).
+ apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4).
+ unfold Rminus in |- *; rewrite Ropp_plus_distr.
+ rewrite Ropp_involutive.
+ apply Rplus_comm.
+ unfold Rminus in |- *; rewrite Ropp_plus_distr.
+ rewrite Ropp_involutive.
+ apply Rplus_comm.
+ unfold Rminus in |- *; apply Rplus_comm.
+ pattern PI at 2 in |- *; rewrite double_var; ring.
+ unfold Rminus in |- *; apply Rplus_comm.
+ pattern PI at 2 in |- *; rewrite double_var; ring.
Qed.
Lemma cos_increasing_0 :
- forall x y:R,
- PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y.
-intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y);
- rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
- unfold INR in |- *;
- replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))).
-replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))).
-repeat rewrite cos_shift; intro H5;
- generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
- generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
- generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
- generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4).
-replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
-replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
-replace (-3 * (PI / 2) + 2 * PI) with (PI / 2).
-replace (-3 * (PI / 2) + PI) with (- (PI / 2)).
-clear H1 H2 H3 H4; intros H1 H2 H3 H4;
- apply Rplus_lt_reg_r with (-3 * (PI / 2));
- replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
-replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
-apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5).
-unfold Rminus in |- *.
-rewrite Ropp_mult_distr_l_reverse.
-apply Rplus_comm.
-unfold Rminus in |- *.
-rewrite Ropp_mult_distr_l_reverse.
-apply Rplus_comm.
-pattern PI at 3 in |- *; rewrite double_var.
-ring.
-rewrite double; pattern PI at 3 4 in |- *; rewrite double_var.
-ring.
-unfold Rminus in |- *.
-rewrite Ropp_mult_distr_l_reverse.
-apply Rplus_comm.
-unfold Rminus in |- *.
-rewrite Ropp_mult_distr_l_reverse.
-apply Rplus_comm.
-rewrite Rmult_1_r.
-rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
-ring.
-rewrite Rmult_1_r.
-rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
-ring.
+ forall x y:R,
+ PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y.
+Proof.
+ intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y);
+ rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
+ unfold INR in |- *;
+ replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))).
+ replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))).
+ repeat rewrite cos_shift; intro H5;
+ generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
+ generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
+ generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
+ generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4).
+ replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
+ replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
+ replace (-3 * (PI / 2) + 2 * PI) with (PI / 2).
+ replace (-3 * (PI / 2) + PI) with (- (PI / 2)).
+ clear H1 H2 H3 H4; intros H1 H2 H3 H4;
+ apply Rplus_lt_reg_r with (-3 * (PI / 2));
+ replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
+ replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
+ apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5).
+ unfold Rminus in |- *.
+ rewrite Ropp_mult_distr_l_reverse.
+ apply Rplus_comm.
+ unfold Rminus in |- *.
+ rewrite Ropp_mult_distr_l_reverse.
+ apply Rplus_comm.
+ pattern PI at 3 in |- *; rewrite double_var.
+ ring.
+ rewrite double; pattern PI at 3 4 in |- *; rewrite double_var.
+ ring.
+ unfold Rminus in |- *.
+ rewrite Ropp_mult_distr_l_reverse.
+ apply Rplus_comm.
+ unfold Rminus in |- *.
+ rewrite Ropp_mult_distr_l_reverse.
+ apply Rplus_comm.
+ rewrite Rmult_1_r.
+ rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
+ ring.
+ rewrite Rmult_1_r.
+ rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
+ ring.
Qed.
Lemma cos_increasing_1 :
- forall x y:R,
- PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y.
-intros x y H1 H2 H3 H4 H5;
- generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
- generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
- generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
- generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4);
- generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5);
- rewrite <- (cos_neg x); rewrite <- (cos_neg y);
- rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
- unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
-replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
-replace (-3 * (PI / 2) + PI) with (- (PI / 2)).
-replace (-3 * (PI / 2) + 2 * PI) with (PI / 2).
-clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5;
- replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))).
-replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))).
-repeat rewrite cos_shift;
- apply
- (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1).
-rewrite Rmult_1_r.
-rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
-ring.
-rewrite Rmult_1_r.
-rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
-ring.
-rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
-ring.
-pattern PI at 3 in |- *; rewrite double_var; ring.
-unfold Rminus in |- *.
-rewrite <- Ropp_mult_distr_l_reverse.
-apply Rplus_comm.
-unfold Rminus in |- *.
-rewrite <- Ropp_mult_distr_l_reverse.
-apply Rplus_comm.
+ forall x y:R,
+ PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y.
+Proof.
+ intros x y H1 H2 H3 H4 H5;
+ generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
+ generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
+ generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
+ generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4);
+ generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5);
+ rewrite <- (cos_neg x); rewrite <- (cos_neg y);
+ rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
+ unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
+ replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
+ replace (-3 * (PI / 2) + PI) with (- (PI / 2)).
+ replace (-3 * (PI / 2) + 2 * PI) with (PI / 2).
+ clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5;
+ replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))).
+ replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))).
+ repeat rewrite cos_shift;
+ apply
+ (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1).
+ rewrite Rmult_1_r.
+ rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
+ ring.
+ rewrite Rmult_1_r.
+ rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
+ ring.
+ rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
+ ring.
+ pattern PI at 3 in |- *; rewrite double_var; ring.
+ unfold Rminus in |- *.
+ rewrite <- Ropp_mult_distr_l_reverse.
+ apply Rplus_comm.
+ unfold Rminus in |- *.
+ rewrite <- Ropp_mult_distr_l_reverse.
+ apply Rplus_comm.
Qed.
Lemma cos_decreasing_0 :
- forall x y:R,
- 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x.
-intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3);
- repeat rewrite <- neg_cos; intro H4;
- change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4;
- rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H);
- generalize (Rplus_le_compat_l PI x PI H0);
- generalize (Rplus_le_compat_l PI 0 y H1);
- generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
-rewrite <- double.
-clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_r with PI;
- apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4).
+ forall x y:R,
+ 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x.
+Proof.
+ intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3);
+ repeat rewrite <- neg_cos; intro H4;
+ change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4;
+ rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H);
+ generalize (Rplus_le_compat_l PI x PI H0);
+ generalize (Rplus_le_compat_l PI 0 y H1);
+ generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
+ rewrite <- double.
+ clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_r with PI;
+ apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4).
Qed.
Lemma cos_decreasing_1 :
- forall x y:R,
- 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x.
-intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos;
- rewrite (Rplus_comm x); rewrite (Rplus_comm y);
- generalize (Rplus_le_compat_l PI 0 x H);
- generalize (Rplus_le_compat_l PI x PI H0);
- generalize (Rplus_le_compat_l PI 0 y H1);
- generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
-rewrite <- double.
-generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros;
- apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H).
+ forall x y:R,
+ 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x.
+Proof.
+ intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos;
+ rewrite (Rplus_comm x); rewrite (Rplus_comm y);
+ generalize (Rplus_le_compat_l PI 0 x H);
+ generalize (Rplus_le_compat_l PI x PI H0);
+ generalize (Rplus_le_compat_l PI 0 y H1);
+ generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
+ rewrite <- double.
+ generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros;
+ apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H).
Qed.
Lemma tan_diff :
- forall x y:R,
- cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y).
-intros; unfold tan in |- *; rewrite sin_minus.
-unfold Rdiv in |- *.
-unfold Rminus in |- *.
-rewrite Rmult_plus_distr_r.
-rewrite Rinv_mult_distr.
-repeat rewrite (Rmult_comm (sin x)).
-repeat rewrite Rmult_assoc.
-rewrite (Rmult_comm (cos y)).
-repeat rewrite Rmult_assoc.
-rewrite <- Rinv_l_sym.
-rewrite Rmult_1_r.
-rewrite (Rmult_comm (sin x)).
-apply Rplus_eq_compat_l.
-rewrite <- Ropp_mult_distr_l_reverse.
-rewrite <- Ropp_mult_distr_r_reverse.
-rewrite (Rmult_comm (/ cos x)).
-repeat rewrite Rmult_assoc.
-rewrite (Rmult_comm (cos x)).
-repeat rewrite Rmult_assoc.
-rewrite <- Rinv_l_sym.
-rewrite Rmult_1_r.
-reflexivity.
-assumption.
-assumption.
-assumption.
-assumption.
+ forall x y:R,
+ cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y).
+Proof.
+ intros; unfold tan in |- *; rewrite sin_minus.
+ unfold Rdiv in |- *.
+ unfold Rminus in |- *.
+ rewrite Rmult_plus_distr_r.
+ rewrite Rinv_mult_distr.
+ repeat rewrite (Rmult_comm (sin x)).
+ repeat rewrite Rmult_assoc.
+ rewrite (Rmult_comm (cos y)).
+ repeat rewrite Rmult_assoc.
+ rewrite <- Rinv_l_sym.
+ rewrite Rmult_1_r.
+ rewrite (Rmult_comm (sin x)).
+ apply Rplus_eq_compat_l.
+ rewrite <- Ropp_mult_distr_l_reverse.
+ rewrite <- Ropp_mult_distr_r_reverse.
+ rewrite (Rmult_comm (/ cos x)).
+ repeat rewrite Rmult_assoc.
+ rewrite (Rmult_comm (cos x)).
+ repeat rewrite Rmult_assoc.
+ rewrite <- Rinv_l_sym.
+ rewrite Rmult_1_r.
+ reflexivity.
+ assumption.
+ assumption.
+ assumption.
+ assumption.
Qed.
Lemma tan_increasing_0 :
- forall x y:R,
- - (PI / 4) <= x ->
- x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y.
-intros; generalize PI4_RLT_PI2; intro H4;
- generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
- intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
- generalize
- (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
- (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
- generalize
- (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
- (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
- generalize
- (sym_not_eq
- (Rlt_not_eq 0 (cos x)
- (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
- (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
- intro H6;
- generalize
- (sym_not_eq
- (Rlt_not_eq 0 (cos y)
- (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
- (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
- intro H7; generalize (tan_diff x y H6 H7); intro H8;
- generalize (Rlt_minus (tan x) (tan y) H3); clear H3;
- intro H3; rewrite H8 in H3; cut (sin (x - y) < 0).
-intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1);
- rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10);
- clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
- intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
- clear H11; intro H11;
- generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11);
- generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10);
- replace (x + - y) with (x - y).
-replace (PI / 4 + PI / 4) with (PI / 2).
-replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)).
-intros; case (Rtotal_order 0 (x - y)); intro H14.
-generalize
- (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI));
- intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)).
-elim H14; intro H15.
-rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9).
-apply Rminus_lt; assumption.
-pattern PI at 1 in |- *; rewrite double_var.
-unfold Rdiv in |- *.
-rewrite Rmult_plus_distr_r.
-repeat rewrite Rmult_assoc.
-rewrite <- Rinv_mult_distr.
-rewrite Ropp_plus_distr.
-replace 4 with 4.
-reflexivity.
-ring.
-discrR.
-discrR.
-pattern PI at 1 in |- *; rewrite double_var.
-unfold Rdiv in |- *.
-rewrite Rmult_plus_distr_r.
-repeat rewrite Rmult_assoc.
-rewrite <- Rinv_mult_distr.
-replace 4 with 4.
-reflexivity.
-ring.
-discrR.
-discrR.
-reflexivity.
-case (Rcase_abs (sin (x - y))); intro H9.
-assumption.
-generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9;
- generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
- generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
- generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
- replace (/ cos x * / cos y) with (/ (cos x * cos y)).
-intro H12;
- generalize
- (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9
- (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13;
- elim
- (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)).
-rewrite Rinv_mult_distr.
-reflexivity.
-assumption.
-assumption.
+ forall x y:R,
+ - (PI / 4) <= x ->
+ x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y.
+Proof.
+ intros; generalize PI4_RLT_PI2; intro H4;
+ generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
+ intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
+ generalize
+ (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
+ (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
+ generalize
+ (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
+ (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
+ generalize
+ (sym_not_eq
+ (Rlt_not_eq 0 (cos x)
+ (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
+ (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
+ intro H6;
+ generalize
+ (sym_not_eq
+ (Rlt_not_eq 0 (cos y)
+ (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
+ (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
+ intro H7; generalize (tan_diff x y H6 H7); intro H8;
+ generalize (Rlt_minus (tan x) (tan y) H3); clear H3;
+ intro H3; rewrite H8 in H3; cut (sin (x - y) < 0).
+ intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1);
+ rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10);
+ clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
+ intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
+ clear H11; intro H11;
+ generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11);
+ generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10);
+ replace (x + - y) with (x - y).
+ replace (PI / 4 + PI / 4) with (PI / 2).
+ replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)).
+ intros; case (Rtotal_order 0 (x - y)); intro H14.
+ generalize
+ (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI));
+ intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)).
+ elim H14; intro H15.
+ rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9).
+ apply Rminus_lt; assumption.
+ pattern PI at 1 in |- *; rewrite double_var.
+ unfold Rdiv in |- *.
+ rewrite Rmult_plus_distr_r.
+ repeat rewrite Rmult_assoc.
+ rewrite <- Rinv_mult_distr.
+ rewrite Ropp_plus_distr.
+ replace 4 with 4.
+ reflexivity.
+ ring.
+ discrR.
+ discrR.
+ pattern PI at 1 in |- *; rewrite double_var.
+ unfold Rdiv in |- *.
+ rewrite Rmult_plus_distr_r.
+ repeat rewrite Rmult_assoc.
+ rewrite <- Rinv_mult_distr.
+ replace 4 with 4.
+ reflexivity.
+ ring.
+ discrR.
+ discrR.
+ reflexivity.
+ case (Rcase_abs (sin (x - y))); intro H9.
+ assumption.
+ generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9;
+ generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
+ generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
+ generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
+ replace (/ cos x * / cos y) with (/ (cos x * cos y)).
+ intro H12;
+ generalize
+ (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9
+ (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13;
+ elim
+ (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)).
+ rewrite Rinv_mult_distr.
+ reflexivity.
+ assumption.
+ assumption.
Qed.
Lemma tan_increasing_1 :
- forall x y:R,
- - (PI / 4) <= x ->
- x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y.
-intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4;
- generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
- intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
- generalize
- (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
- (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
- generalize
- (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
- (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
- generalize
- (sym_not_eq
- (Rlt_not_eq 0 (cos x)
- (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
- (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
- intro H6;
- generalize
- (sym_not_eq
- (Rlt_not_eq 0 (cos y)
- (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
- (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
- intro H7; rewrite (tan_diff x y H6 H7);
- generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
- generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
- generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
- replace (/ cos x * / cos y) with (/ (cos x * cos y)).
-clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
- intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
- clear H11; intro H11;
- generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11);
- replace (x + - y) with (x - y).
-replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)).
-clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3;
- clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI;
- intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1);
- clear H1; intro H1;
- generalize
- (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3);
- intro H2;
- generalize
- (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8);
- rewrite Rmult_0_r; intro H4; assumption.
-pattern PI at 1 in |- *; rewrite double_var.
-unfold Rdiv in |- *.
-rewrite Rmult_plus_distr_r.
-repeat rewrite Rmult_assoc.
-rewrite <- Rinv_mult_distr.
-replace 4 with 4.
-rewrite Ropp_plus_distr.
-reflexivity.
-ring.
-discrR.
-discrR.
-reflexivity.
-apply Rinv_mult_distr; assumption.
+ forall x y:R,
+ - (PI / 4) <= x ->
+ x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y.
+Proof.
+ intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4;
+ generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
+ intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
+ generalize
+ (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
+ (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
+ generalize
+ (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
+ (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
+ generalize
+ (sym_not_eq
+ (Rlt_not_eq 0 (cos x)
+ (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
+ (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
+ intro H6;
+ generalize
+ (sym_not_eq
+ (Rlt_not_eq 0 (cos y)
+ (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
+ (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
+ intro H7; rewrite (tan_diff x y H6 H7);
+ generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
+ generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
+ generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
+ replace (/ cos x * / cos y) with (/ (cos x * cos y)).
+ clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
+ intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
+ clear H11; intro H11;
+ generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11);
+ replace (x + - y) with (x - y).
+ replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)).
+ clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3;
+ clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI;
+ intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1);
+ clear H1; intro H1;
+ generalize
+ (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3);
+ intro H2;
+ generalize
+ (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8);
+ rewrite Rmult_0_r; intro H4; assumption.
+ pattern PI at 1 in |- *; rewrite double_var.
+ unfold Rdiv in |- *.
+ rewrite Rmult_plus_distr_r.
+ repeat rewrite Rmult_assoc.
+ rewrite <- Rinv_mult_distr.
+ replace 4 with 4.
+ rewrite Ropp_plus_distr.
+ reflexivity.
+ ring.
+ discrR.
+ discrR.
+ reflexivity.
+ apply Rinv_mult_distr; assumption.
Qed.
Lemma sin_incr_0 :
- forall x y:R,
- - (PI / 2) <= x ->
- x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y.
-intros; case (Rtotal_order (sin x) (sin y)); intro H4;
- [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order x y); intro H6;
- [ left; assumption
- | elim H6; intro H7;
- [ right; assumption
- | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ]
- | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
+ forall x y:R,
+ - (PI / 2) <= x ->
+ x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y.
+Proof.
+ intros; case (Rtotal_order (sin x) (sin y)); intro H4;
+ [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order x y); intro H6;
+ [ left; assumption
+ | elim H6; intro H7;
+ [ right; assumption
+ | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ]
+ | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
Qed.
Lemma sin_incr_1 :
- forall x y:R,
- - (PI / 2) <= x ->
- x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y.
-intros; case (Rtotal_order x y); intro H4;
- [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order (sin x) (sin y)); intro H6;
- [ left; assumption
- | elim H6; intro H7;
- [ right; assumption
- | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
- | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
+ forall x y:R,
+ - (PI / 2) <= x ->
+ x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y.
+Proof.
+ intros; case (Rtotal_order x y); intro H4;
+ [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order (sin x) (sin y)); intro H6;
+ [ left; assumption
+ | elim H6; intro H7;
+ [ right; assumption
+ | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
+ | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
Lemma sin_decr_0 :
- forall x y:R,
- x <= 3 * (PI / 2) ->
- PI / 2 <= x ->
- y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x.
-intros; case (Rtotal_order (sin x) (sin y)); intro H4;
- [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order x y); intro H6;
- [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8)
- | elim H6; intro H7;
- [ right; symmetry in |- *; assumption | left; assumption ] ]
- | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
+ forall x y:R,
+ x <= 3 * (PI / 2) ->
+ PI / 2 <= x ->
+ y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x.
+Proof.
+ intros; case (Rtotal_order (sin x) (sin y)); intro H4;
+ [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order x y); intro H6;
+ [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8)
+ | elim H6; intro H7;
+ [ right; symmetry in |- *; assumption | left; assumption ] ]
+ | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
Qed.
Lemma sin_decr_1 :
- forall x y:R,
- x <= 3 * (PI / 2) ->
- PI / 2 <= x ->
- y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x.
-intros; case (Rtotal_order x y); intro H4;
- [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order (sin x) (sin y)); intro H6;
- [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl y H8)
- | elim H6; intro H7;
- [ right; symmetry in |- *; assumption | left; assumption ] ]
- | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
+ forall x y:R,
+ x <= 3 * (PI / 2) ->
+ PI / 2 <= x ->
+ y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x.
+Proof.
+ intros; case (Rtotal_order x y); intro H4;
+ [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order (sin x) (sin y)); intro H6;
+ [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl y H8)
+ | elim H6; intro H7;
+ [ right; symmetry in |- *; assumption | left; assumption ] ]
+ | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
Lemma cos_incr_0 :
- forall x y:R,
- PI <= x ->
- x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y.
-intros; case (Rtotal_order (cos x) (cos y)); intro H4;
- [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order x y); intro H6;
- [ left; assumption
- | elim H6; intro H7;
- [ right; assumption
- | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ]
- | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
+ forall x y:R,
+ PI <= x ->
+ x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y.
+Proof.
+ intros; case (Rtotal_order (cos x) (cos y)); intro H4;
+ [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order x y); intro H6;
+ [ left; assumption
+ | elim H6; intro H7;
+ [ right; assumption
+ | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ]
+ | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
Qed.
Lemma cos_incr_1 :
- forall x y:R,
- PI <= x ->
- x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y.
-intros; case (Rtotal_order x y); intro H4;
- [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order (cos x) (cos y)); intro H6;
- [ left; assumption
- | elim H6; intro H7;
- [ right; assumption
- | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
- | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
+ forall x y:R,
+ PI <= x ->
+ x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y.
+Proof.
+ intros; case (Rtotal_order x y); intro H4;
+ [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order (cos x) (cos y)); intro H6;
+ [ left; assumption
+ | elim H6; intro H7;
+ [ right; assumption
+ | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
+ | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
Lemma cos_decr_0 :
- forall x y:R,
- 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x.
-intros; case (Rtotal_order (cos x) (cos y)); intro H4;
- [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order x y); intro H6;
- [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8)
- | elim H6; intro H7;
- [ right; symmetry in |- *; assumption | left; assumption ] ]
- | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
+ forall x y:R,
+ 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x.
+Proof.
+ intros; case (Rtotal_order (cos x) (cos y)); intro H4;
+ [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order x y); intro H6;
+ [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8)
+ | elim H6; intro H7;
+ [ right; symmetry in |- *; assumption | left; assumption ] ]
+ | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
Qed.
Lemma cos_decr_1 :
- forall x y:R,
- 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x.
-intros; case (Rtotal_order x y); intro H4;
- [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order (cos x) (cos y)); intro H6;
- [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl y H8)
- | elim H6; intro H7;
- [ right; symmetry in |- *; assumption | left; assumption ] ]
- | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
+ forall x y:R,
+ 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x.
+Proof.
+ intros; case (Rtotal_order x y); intro H4;
+ [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order (cos x) (cos y)); intro H6;
+ [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl y H8)
+ | elim H6; intro H7;
+ [ right; symmetry in |- *; assumption | left; assumption ] ]
+ | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
Lemma tan_incr_0 :
- forall x y:R,
- - (PI / 4) <= x ->
- x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y.
-intros; case (Rtotal_order (tan x) (tan y)); intro H4;
- [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order x y); intro H6;
- [ left; assumption
- | elim H6; intro H7;
- [ right; assumption
- | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ]
- | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ].
+ forall x y:R,
+ - (PI / 4) <= x ->
+ x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y.
+Proof.
+ intros; case (Rtotal_order (tan x) (tan y)); intro H4;
+ [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order x y); intro H6;
+ [ left; assumption
+ | elim H6; intro H7;
+ [ right; assumption
+ | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ]
+ | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ].
Qed.
Lemma tan_incr_1 :
- forall x y:R,
- - (PI / 4) <= x ->
- x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y.
-intros; case (Rtotal_order x y); intro H4;
- [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4)
- | elim H4; intro H5;
- [ case (Rtotal_order (tan x) (tan y)); intro H6;
- [ left; assumption
- | elim H6; intro H7;
- [ right; assumption
- | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8;
- rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
- | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
+ forall x y:R,
+ - (PI / 4) <= x ->
+ x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y.
+Proof.
+ intros; case (Rtotal_order x y); intro H4;
+ [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4)
+ | elim H4; intro H5;
+ [ case (Rtotal_order (tan x) (tan y)); intro H6;
+ [ left; assumption
+ | elim H6; intro H7;
+ [ right; assumption
+ | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8;
+ rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
+ | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
(**********)
Lemma sin_eq_0_1 : forall x:R, (exists k : Z, x = IZR k * PI) -> sin x = 0.
-intros.
-elim H; intros.
-apply (Zcase_sign x0).
-intro.
-rewrite H1 in H0.
-simpl in H0.
-rewrite H0; rewrite Rmult_0_l; apply sin_0.
-intro.
-cut (0 <= x0)%Z.
-intro.
-elim (IZN x0 H2); intros.
-rewrite H3 in H0.
-rewrite <- INR_IZR_INZ in H0.
-rewrite H0.
-elim (even_odd_cor x1); intros.
-elim H4; intro.
-rewrite H5.
-rewrite mult_INR.
-simpl in |- *.
-rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
-rewrite sin_period.
-apply sin_0.
-rewrite H5.
-rewrite S_INR; rewrite mult_INR.
-simpl in |- *.
-rewrite Rmult_plus_distr_r.
-rewrite Rmult_1_l; rewrite sin_plus.
-rewrite sin_PI.
-rewrite Rmult_0_r.
-rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
-rewrite sin_period.
-rewrite sin_0; ring.
-apply le_IZR.
-left; apply IZR_lt.
-assert (H2 := Zorder.Zgt_iff_lt).
-elim (H2 x0 0%Z); intros.
-apply H3; assumption.
-intro.
-rewrite H0.
-replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)).
-cut (0 <= - x0)%Z.
-intro.
-rewrite <- Ropp_Ropp_IZR.
-elim (IZN (- x0) H2); intros.
-rewrite H3.
-rewrite <- INR_IZR_INZ.
-elim (even_odd_cor x1); intros.
-elim H4; intro.
-rewrite H5.
-rewrite mult_INR.
-simpl in |- *.
-rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
-rewrite sin_period.
-rewrite sin_0; ring.
-rewrite H5.
-rewrite S_INR; rewrite mult_INR.
-simpl in |- *.
-rewrite Rmult_plus_distr_r.
-rewrite Rmult_1_l; rewrite sin_plus.
-rewrite sin_PI.
-rewrite Rmult_0_r.
-rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
-rewrite sin_period.
-rewrite sin_0; ring.
-apply le_IZR.
-apply Rplus_le_reg_l with (IZR x0).
-rewrite Rplus_0_r.
-rewrite Ropp_Ropp_IZR.
-rewrite Rplus_opp_r.
-left; replace 0 with (IZR 0); [ apply IZR_lt | reflexivity ].
-assumption.
-rewrite <- sin_neg.
-rewrite Ropp_mult_distr_l_reverse.
-rewrite Ropp_involutive.
-reflexivity.
+Proof.
+ intros.
+ elim H; intros.
+ apply (Zcase_sign x0).
+ intro.
+ rewrite H1 in H0.
+ simpl in H0.
+ rewrite H0; rewrite Rmult_0_l; apply sin_0.
+ intro.
+ cut (0 <= x0)%Z.
+ intro.
+ elim (IZN x0 H2); intros.
+ rewrite H3 in H0.
+ rewrite <- INR_IZR_INZ in H0.
+ rewrite H0.
+ elim (even_odd_cor x1); intros.
+ elim H4; intro.
+ rewrite H5.
+ rewrite mult_INR.
+ simpl in |- *.
+ rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
+ rewrite sin_period.
+ apply sin_0.
+ rewrite H5.
+ rewrite S_INR; rewrite mult_INR.
+ simpl in |- *.
+ rewrite Rmult_plus_distr_r.
+ rewrite Rmult_1_l; rewrite sin_plus.
+ rewrite sin_PI.
+ rewrite Rmult_0_r.
+ rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
+ rewrite sin_period.
+ rewrite sin_0; ring.
+ apply le_IZR.
+ left; apply IZR_lt.
+ assert (H2 := Zorder.Zgt_iff_lt).
+ elim (H2 x0 0%Z); intros.
+ apply H3; assumption.
+ intro.
+ rewrite H0.
+ replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)).
+ cut (0 <= - x0)%Z.
+ intro.
+ rewrite <- Ropp_Ropp_IZR.
+ elim (IZN (- x0) H2); intros.
+ rewrite H3.
+ rewrite <- INR_IZR_INZ.
+ elim (even_odd_cor x1); intros.
+ elim H4; intro.
+ rewrite H5.
+ rewrite mult_INR.
+ simpl in |- *.
+ rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
+ rewrite sin_period.
+ rewrite sin_0; ring.
+ rewrite H5.
+ rewrite S_INR; rewrite mult_INR.
+ simpl in |- *.
+ rewrite Rmult_plus_distr_r.
+ rewrite Rmult_1_l; rewrite sin_plus.
+ rewrite sin_PI.
+ rewrite Rmult_0_r.
+ rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
+ rewrite sin_period.
+ rewrite sin_0; ring.
+ apply le_IZR.
+ apply Rplus_le_reg_l with (IZR x0).
+ rewrite Rplus_0_r.
+ rewrite Ropp_Ropp_IZR.
+ rewrite Rplus_opp_r.
+ left; replace 0 with (IZR 0); [ apply IZR_lt | reflexivity ].
+ assumption.
+ rewrite <- sin_neg.
+ rewrite Ropp_mult_distr_l_reverse.
+ rewrite Ropp_involutive.
+ reflexivity.
Qed.
Lemma sin_eq_0_0 : forall x:R, sin x = 0 -> exists k : Z, x = IZR k * PI.
-intros.
-assert (H0 := euclidian_division x PI PI_neq0).
-elim H0; intros q H1.
-elim H1; intros r H2.
-exists q.
-cut (r = 0).
-intro.
-elim H2; intros H4 _; rewrite H4; rewrite H3.
-apply Rplus_0_r.
-elim H2; intros.
-rewrite H3 in H.
-rewrite sin_plus in H.
-cut (sin (IZR q * PI) = 0).
-intro.
-rewrite H5 in H.
-rewrite Rmult_0_l in H.
-rewrite Rplus_0_l in H.
-assert (H6 := Rmult_integral _ _ H).
-elim H6; intro.
-assert (H8 := sin2_cos2 (IZR q * PI)).
-rewrite H5 in H8; rewrite H7 in H8.
-rewrite Rsqr_0 in H8.
-rewrite Rplus_0_r in H8.
-elim R1_neq_R0; symmetry in |- *; assumption.
-cut (r = 0 \/ 0 < r < PI).
-intro; elim H8; intro.
-assumption.
-elim H9; intros.
-assert (H12 := sin_gt_0 _ H10 H11).
-rewrite H7 in H12; elim (Rlt_irrefl _ H12).
-rewrite Rabs_right in H4.
-elim H4; intros.
-case (Rtotal_order 0 r); intro.
-right; split; assumption.
-elim H10; intro.
-left; symmetry in |- *; assumption.
-elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H8 H11)).
-apply Rle_ge.
-left; apply PI_RGT_0.
-apply sin_eq_0_1.
-exists q; reflexivity.
+Proof.
+ intros.
+ assert (H0 := euclidian_division x PI PI_neq0).
+ elim H0; intros q H1.
+ elim H1; intros r H2.
+ exists q.
+ cut (r = 0).
+ intro.
+ elim H2; intros H4 _; rewrite H4; rewrite H3.
+ apply Rplus_0_r.
+ elim H2; intros.
+ rewrite H3 in H.
+ rewrite sin_plus in H.
+ cut (sin (IZR q * PI) = 0).
+ intro.
+ rewrite H5 in H.
+ rewrite Rmult_0_l in H.
+ rewrite Rplus_0_l in H.
+ assert (H6 := Rmult_integral _ _ H).
+ elim H6; intro.
+ assert (H8 := sin2_cos2 (IZR q * PI)).
+ rewrite H5 in H8; rewrite H7 in H8.
+ rewrite Rsqr_0 in H8.
+ rewrite Rplus_0_r in H8.
+ elim R1_neq_R0; symmetry in |- *; assumption.
+ cut (r = 0 \/ 0 < r < PI).
+ intro; elim H8; intro.
+ assumption.
+ elim H9; intros.
+ assert (H12 := sin_gt_0 _ H10 H11).
+ rewrite H7 in H12; elim (Rlt_irrefl _ H12).
+ rewrite Rabs_right in H4.
+ elim H4; intros.
+ case (Rtotal_order 0 r); intro.
+ right; split; assumption.
+ elim H10; intro.
+ left; symmetry in |- *; assumption.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H8 H11)).
+ apply Rle_ge.
+ left; apply PI_RGT_0.
+ apply sin_eq_0_1.
+ exists q; reflexivity.
Qed.
Lemma cos_eq_0_0 :
- forall x:R, cos x = 0 -> exists k : Z, x = IZR k * PI + PI / 2.
-intros x H; rewrite cos_sin in H; generalize (sin_eq_0_0 (PI / INR 2 + x) H);
- intro H2; elim H2; intros x0 H3; exists (x0 - Z_of_nat 1)%Z;
- rewrite <- Z_R_minus; ring; rewrite Rmult_comm; rewrite <- H3;
- unfold INR in |- *.
-rewrite (double_var (- PI)); unfold Rdiv in |- *; ring.
+ forall x:R, cos x = 0 -> exists k : Z, x = IZR k * PI + PI / 2.
+Proof.
+ intros x H; rewrite cos_sin in H; generalize (sin_eq_0_0 (PI / INR 2 + x) H);
+ intro H2; elim H2; intros x0 H3; exists (x0 - Z_of_nat 1)%Z;
+ rewrite <- Z_R_minus; simpl; ring_simplify;
+(* rewrite (Rmult_comm PI);*) (* old ring compat *)
+ rewrite <- H3; simpl;
+ field; repeat split; discrR.
Qed.
Lemma cos_eq_0_1 :
- forall x:R, (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0.
-intros x H1; rewrite cos_sin; elim H1; intros x0 H2; rewrite H2;
- replace (PI / 2 + (IZR x0 * PI + PI / 2)) with (IZR x0 * PI + PI).
-rewrite neg_sin; rewrite <- Ropp_0.
-apply Ropp_eq_compat; apply sin_eq_0_1; exists x0; reflexivity.
-pattern PI at 2 in |- *; rewrite (double_var PI); ring.
+ forall x:R, (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0.
+Proof.
+ intros x H1; rewrite cos_sin; elim H1; intros x0 H2; rewrite H2;
+ replace (PI / 2 + (IZR x0 * PI + PI / 2)) with (IZR x0 * PI + PI).
+ rewrite neg_sin; rewrite <- Ropp_0.
+ apply Ropp_eq_compat; apply sin_eq_0_1; exists x0; reflexivity.
+ pattern PI at 2 in |- *; rewrite (double_var PI); ring.
Qed.
Lemma sin_eq_O_2PI_0 :
- forall x:R,
- 0 <= x -> x <= 2 * PI -> sin x = 0 -> x = 0 \/ x = PI \/ x = 2 * PI.
-intros; generalize (sin_eq_0_0 x H1); intro.
-elim H2; intros k0 H3.
-case (Rtotal_order PI x); intro.
-rewrite H3 in H4; rewrite H3 in H0.
-right; right.
-generalize
- (Rmult_lt_compat_r (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0) H4);
- rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym.
-rewrite Rmult_1_r; intro;
- generalize
- (Rmult_le_compat_r (/ PI) (IZR k0 * PI) (2 * PI)
- (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H0);
- repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym.
-repeat rewrite Rmult_1_r; intro;
- generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H5);
- rewrite <- plus_IZR.
-replace (IZR (-2) + 1) with (-1).
-intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) 2 H6);
- rewrite <- plus_IZR.
-replace (IZR (-2) + 2) with 0.
-intro; cut (-1 < IZR (-2 + k0) < 1).
-intro; generalize (one_IZR_lt1 (-2 + k0) H9); intro.
-cut (k0 = 2%Z).
-intro; rewrite H11 in H3; rewrite H3; simpl in |- *.
-reflexivity.
-rewrite <- (Zplus_opp_l 2) in H10; generalize (Zplus_reg_l (-2) k0 2 H10);
- intro; assumption.
-split.
-assumption.
-apply Rle_lt_trans with 0.
-assumption.
-apply Rlt_0_1.
-simpl in |- *; ring.
-simpl in |- *; ring.
-apply PI_neq0.
-apply PI_neq0.
-elim H4; intro.
-right; left.
-symmetry in |- *; assumption.
-left.
-rewrite H3 in H5; rewrite H3 in H;
- generalize
- (Rmult_lt_compat_r (/ PI) (IZR k0 * PI) PI (Rinv_0_lt_compat PI PI_RGT_0)
- H5); rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym.
-rewrite Rmult_1_r; intro;
- generalize
- (Rmult_le_compat_r (/ PI) 0 (IZR k0 * PI)
- (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H);
- repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym.
-rewrite Rmult_1_r; rewrite Rmult_0_l; intro.
-cut (-1 < IZR k0 < 1).
-intro; generalize (one_IZR_lt1 k0 H8); intro; rewrite H9 in H3; rewrite H3;
- simpl in |- *; apply Rmult_0_l.
-split.
-apply Rlt_le_trans with 0.
-rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; apply Rlt_0_1.
-assumption.
-assumption.
-apply PI_neq0.
-apply PI_neq0.
+ forall x:R,
+ 0 <= x -> x <= 2 * PI -> sin x = 0 -> x = 0 \/ x = PI \/ x = 2 * PI.
+Proof.
+ intros; generalize (sin_eq_0_0 x H1); intro.
+ elim H2; intros k0 H3.
+ case (Rtotal_order PI x); intro.
+ rewrite H3 in H4; rewrite H3 in H0.
+ right; right.
+ generalize
+ (Rmult_lt_compat_r (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0) H4);
+ rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym.
+ rewrite Rmult_1_r; intro;
+ generalize
+ (Rmult_le_compat_r (/ PI) (IZR k0 * PI) (2 * PI)
+ (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H0);
+ repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym.
+ repeat rewrite Rmult_1_r; intro;
+ generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H5);
+ rewrite <- plus_IZR.
+ replace (IZR (-2) + 1) with (-1).
+ intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) 2 H6);
+ rewrite <- plus_IZR.
+ replace (IZR (-2) + 2) with 0.
+ intro; cut (-1 < IZR (-2 + k0) < 1).
+ intro; generalize (one_IZR_lt1 (-2 + k0) H9); intro.
+ cut (k0 = 2%Z).
+ intro; rewrite H11 in H3; rewrite H3; simpl in |- *.
+ reflexivity.
+ rewrite <- (Zplus_opp_l 2) in H10; generalize (Zplus_reg_l (-2) k0 2 H10);
+ intro; assumption.
+ split.
+ assumption.
+ apply Rle_lt_trans with 0.
+ assumption.
+ apply Rlt_0_1.
+ simpl in |- *; ring.
+ simpl in |- *; ring.
+ apply PI_neq0.
+ apply PI_neq0.
+ elim H4; intro.
+ right; left.
+ symmetry in |- *; assumption.
+ left.
+ rewrite H3 in H5; rewrite H3 in H;
+ generalize
+ (Rmult_lt_compat_r (/ PI) (IZR k0 * PI) PI (Rinv_0_lt_compat PI PI_RGT_0)
+ H5); rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym.
+ rewrite Rmult_1_r; intro;
+ generalize
+ (Rmult_le_compat_r (/ PI) 0 (IZR k0 * PI)
+ (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H);
+ repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym.
+ rewrite Rmult_1_r; rewrite Rmult_0_l; intro.
+ cut (-1 < IZR k0 < 1).
+ intro; generalize (one_IZR_lt1 k0 H8); intro; rewrite H9 in H3; rewrite H3;
+ simpl in |- *; apply Rmult_0_l.
+ split.
+ apply Rlt_le_trans with 0.
+ rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; apply Rlt_0_1.
+ assumption.
+ assumption.
+ apply PI_neq0.
+ apply PI_neq0.
Qed.
Lemma sin_eq_O_2PI_1 :
- forall x:R,
- 0 <= x -> x <= 2 * PI -> x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0.
-intros x H1 H2 H3; elim H3; intro H4;
- [ rewrite H4; rewrite sin_0; reflexivity
- | elim H4; intro H5;
- [ rewrite H5; rewrite sin_PI; reflexivity
- | rewrite H5; rewrite sin_2PI; reflexivity ] ].
+ forall x:R,
+ 0 <= x -> x <= 2 * PI -> x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0.
+Proof.
+ intros x H1 H2 H3; elim H3; intro H4;
+ [ rewrite H4; rewrite sin_0; reflexivity
+ | elim H4; intro H5;
+ [ rewrite H5; rewrite sin_PI; reflexivity
+ | rewrite H5; rewrite sin_2PI; reflexivity ] ].
Qed.
Lemma cos_eq_0_2PI_0 :
- forall x:R,
- 0 <= x -> x <= 2 * PI -> cos x = 0 -> x = PI / 2 \/ x = 3 * (PI / 2).
-intros; case (Rtotal_order x (3 * (PI / 2))); intro.
-rewrite cos_sin in H1.
-cut (0 <= PI / 2 + x).
-cut (PI / 2 + x <= 2 * PI).
-intros; generalize (sin_eq_O_2PI_0 (PI / 2 + x) H4 H3 H1); intros.
-decompose [or] H5.
-generalize (Rplus_le_compat_l (PI / 2) 0 x H); rewrite Rplus_0_r; rewrite H6;
- intro.
-elim (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 H7)).
-left.
-generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) PI H7).
-replace (- (PI / 2) + (PI / 2 + x)) with x.
-replace (- (PI / 2) + PI) with (PI / 2).
-intro; assumption.
-pattern PI at 3 in |- *; rewrite (double_var PI); ring.
-ring.
-right.
-generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) (2 * PI) H7).
-replace (- (PI / 2) + (PI / 2 + x)) with x.
-replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)).
-intro; assumption.
-rewrite double; pattern PI at 3 4 in |- *; rewrite (double_var PI); ring.
-ring.
-left; replace (2 * PI) with (PI / 2 + 3 * (PI / 2)).
-apply Rplus_lt_compat_l; assumption.
-rewrite (double PI); pattern PI at 3 4 in |- *; rewrite (double_var PI); ring.
-apply Rplus_le_le_0_compat.
-left; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
-apply PI_RGT_0.
-apply Rinv_0_lt_compat; prove_sup0.
-assumption.
-elim H2; intro.
-right; assumption.
-generalize (cos_eq_0_0 x H1); intro; elim H4; intros k0 H5.
-rewrite H5 in H3; rewrite H5 in H0;
- generalize
- (Rplus_lt_compat_l (- (PI / 2)) (3 * (PI / 2)) (IZR k0 * PI + PI / 2) H3);
- generalize
- (Rplus_le_compat_l (- (PI / 2)) (IZR k0 * PI + PI / 2) (2 * PI) H0).
-replace (- (PI / 2) + 3 * (PI / 2)) with PI.
-replace (- (PI / 2) + (IZR k0 * PI + PI / 2)) with (IZR k0 * PI).
-replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)).
-intros;
- generalize
- (Rmult_lt_compat_l (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0)
- H7);
- generalize
- (Rmult_le_compat_l (/ PI) (IZR k0 * PI) (3 * (PI / 2))
- (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H6).
-replace (/ PI * (IZR k0 * PI)) with (IZR k0).
-replace (/ PI * (3 * (PI / 2))) with (3 * / 2).
-rewrite <- Rinv_l_sym.
-intros; generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H9);
- rewrite <- plus_IZR.
-replace (IZR (-2) + 1) with (-1).
-intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) (3 * / 2) H8);
- rewrite <- plus_IZR.
-replace (IZR (-2) + 2) with 0.
-intro; cut (-1 < IZR (-2 + k0) < 1).
-intro; generalize (one_IZR_lt1 (-2 + k0) H12); intro.
-cut (k0 = 2%Z).
-intro; rewrite H14 in H8.
-assert (Hyp : 0 < 2).
-prove_sup0.
-generalize (Rmult_le_compat_l 2 (IZR 2) (3 * / 2) (Rlt_le 0 2 Hyp) H8);
- simpl in |- *.
-replace 4 with 4.
-replace (2 * (3 * / 2)) with 3.
-intro; cut (3 < 4).
-intro; elim (Rlt_irrefl 3 (Rlt_le_trans 3 4 3 H16 H15)).
-generalize (Rplus_lt_compat_l 3 0 1 Rlt_0_1); rewrite Rplus_0_r.
-replace (3 + 1) with 4.
-intro; assumption.
-ring.
-symmetry in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
-discrR.
-ring.
-rewrite <- (Zplus_opp_l 2) in H13; generalize (Zplus_reg_l (-2) k0 2 H13);
- intro; assumption.
-split.
-assumption.
-apply Rle_lt_trans with (IZR (-2) + 3 * / 2).
-assumption.
-simpl in |- *; replace (-2 + 3 * / 2) with (- (1 * / 2)).
-apply Rlt_trans with 0.
-rewrite <- Ropp_0; apply Ropp_lt_gt_contravar.
-apply Rmult_lt_0_compat;
- [ apply Rlt_0_1 | apply Rinv_0_lt_compat; prove_sup0 ].
-apply Rlt_0_1.
-rewrite Rmult_1_l; apply Rmult_eq_reg_l with 2.
-rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_r_sym.
-rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m.
-ring.
-discrR.
-discrR.
-discrR.
-simpl in |- *; ring.
-simpl in |- *; ring.
-apply PI_neq0.
-unfold Rdiv in |- *; pattern 3 at 1 in |- *; rewrite (Rmult_comm 3);
- repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
-rewrite Rmult_1_l; apply Rmult_comm.
-apply PI_neq0.
-symmetry in |- *; rewrite (Rmult_comm (/ PI)); rewrite Rmult_assoc;
- rewrite <- Rinv_r_sym.
-apply Rmult_1_r.
-apply PI_neq0.
-rewrite double; pattern PI at 3 4 in |- *; rewrite double_var; ring.
-ring.
-pattern PI at 1 in |- *; rewrite double_var; ring.
+ forall x:R,
+ 0 <= x -> x <= 2 * PI -> cos x = 0 -> x = PI / 2 \/ x = 3 * (PI / 2).
+Proof.
+ intros; case (Rtotal_order x (3 * (PI / 2))); intro.
+ rewrite cos_sin in H1.
+ cut (0 <= PI / 2 + x).
+ cut (PI / 2 + x <= 2 * PI).
+ intros; generalize (sin_eq_O_2PI_0 (PI / 2 + x) H4 H3 H1); intros.
+ decompose [or] H5.
+ generalize (Rplus_le_compat_l (PI / 2) 0 x H); rewrite Rplus_0_r; rewrite H6;
+ intro.
+ elim (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 H7)).
+ left.
+ generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) PI H7).
+ replace (- (PI / 2) + (PI / 2 + x)) with x.
+ replace (- (PI / 2) + PI) with (PI / 2).
+ intro; assumption.
+ pattern PI at 3 in |- *; rewrite (double_var PI); ring.
+ ring.
+ right.
+ generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) (2 * PI) H7).
+ replace (- (PI / 2) + (PI / 2 + x)) with x.
+ replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)).
+ intro; assumption.
+ rewrite double; pattern PI at 3 4 in |- *; rewrite (double_var PI); ring.
+ ring.
+ left; replace (2 * PI) with (PI / 2 + 3 * (PI / 2)).
+ apply Rplus_lt_compat_l; assumption.
+ rewrite (double PI); pattern PI at 3 4 in |- *; rewrite (double_var PI); ring.
+ apply Rplus_le_le_0_compat.
+ left; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ apply PI_RGT_0.
+ apply Rinv_0_lt_compat; prove_sup0.
+ assumption.
+ elim H2; intro.
+ right; assumption.
+ generalize (cos_eq_0_0 x H1); intro; elim H4; intros k0 H5.
+ rewrite H5 in H3; rewrite H5 in H0;
+ generalize
+ (Rplus_lt_compat_l (- (PI / 2)) (3 * (PI / 2)) (IZR k0 * PI + PI / 2) H3);
+ generalize
+ (Rplus_le_compat_l (- (PI / 2)) (IZR k0 * PI + PI / 2) (2 * PI) H0).
+ replace (- (PI / 2) + 3 * (PI / 2)) with PI.
+ replace (- (PI / 2) + (IZR k0 * PI + PI / 2)) with (IZR k0 * PI).
+ replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)).
+ intros;
+ generalize
+ (Rmult_lt_compat_l (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0)
+ H7);
+ generalize
+ (Rmult_le_compat_l (/ PI) (IZR k0 * PI) (3 * (PI / 2))
+ (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H6).
+ replace (/ PI * (IZR k0 * PI)) with (IZR k0).
+ replace (/ PI * (3 * (PI / 2))) with (3 * / 2).
+ rewrite <- Rinv_l_sym.
+ intros; generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H9);
+ rewrite <- plus_IZR.
+ replace (IZR (-2) + 1) with (-1).
+ intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) (3 * / 2) H8);
+ rewrite <- plus_IZR.
+ replace (IZR (-2) + 2) with 0.
+ intro; cut (-1 < IZR (-2 + k0) < 1).
+ intro; generalize (one_IZR_lt1 (-2 + k0) H12); intro.
+ cut (k0 = 2%Z).
+ intro; rewrite H14 in H8.
+ assert (Hyp : 0 < 2).
+ prove_sup0.
+ generalize (Rmult_le_compat_l 2 (IZR 2) (3 * / 2) (Rlt_le 0 2 Hyp) H8);
+ simpl in |- *.
+ replace 4 with 4.
+ replace (2 * (3 * / 2)) with 3.
+ intro; cut (3 < 4).
+ intro; elim (Rlt_irrefl 3 (Rlt_le_trans 3 4 3 H16 H15)).
+ generalize (Rplus_lt_compat_l 3 0 1 Rlt_0_1); rewrite Rplus_0_r.
+ replace (3 + 1) with 4.
+ intro; assumption.
+ ring.
+ symmetry in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
+ discrR.
+ ring.
+ rewrite <- (Zplus_opp_l 2) in H13; generalize (Zplus_reg_l (-2) k0 2 H13);
+ intro; assumption.
+ split.
+ assumption.
+ apply Rle_lt_trans with (IZR (-2) + 3 * / 2).
+ assumption.
+ simpl in |- *; replace (-2 + 3 * / 2) with (- (1 * / 2)).
+ apply Rlt_trans with 0.
+ rewrite <- Ropp_0; apply Ropp_lt_gt_contravar.
+ apply Rmult_lt_0_compat;
+ [ apply Rlt_0_1 | apply Rinv_0_lt_compat; prove_sup0 ].
+ apply Rlt_0_1.
+ rewrite Rmult_1_l; apply Rmult_eq_reg_l with 2.
+ rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_r_sym.
+ rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m.
+ ring.
+ discrR.
+ discrR.
+ discrR.
+ simpl in |- *; ring.
+ simpl in |- *; ring.
+ apply PI_neq0.
+ unfold Rdiv in |- *; pattern 3 at 1 in |- *; rewrite (Rmult_comm 3);
+ repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
+ rewrite Rmult_1_l; apply Rmult_comm.
+ apply PI_neq0.
+ symmetry in |- *; rewrite (Rmult_comm (/ PI)); rewrite Rmult_assoc;
+ rewrite <- Rinv_r_sym.
+ apply Rmult_1_r.
+ apply PI_neq0.
+ rewrite double; pattern PI at 3 4 in |- *; rewrite double_var; ring.
+ ring.
+ pattern PI at 1 in |- *; rewrite double_var; ring.
Qed.
Lemma cos_eq_0_2PI_1 :
- forall x:R,
- 0 <= x -> x <= 2 * PI -> x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0.
-intros x H1 H2 H3; elim H3; intro H4;
- [ rewrite H4; rewrite cos_PI2; reflexivity
- | rewrite H4; rewrite cos_3PI2; reflexivity ].
+ forall x:R,
+ 0 <= x -> x <= 2 * PI -> x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0.
+Proof.
+ intros x H1 H2 H3; elim H3; intro H4;
+ [ rewrite H4; rewrite cos_PI2; reflexivity
+ | rewrite H4; rewrite cos_3PI2; reflexivity ].
Qed.