diff options
Diffstat (limited to 'theories/Reals/Rtrigo.v')
-rw-r--r-- | theories/Reals/Rtrigo.v | 2876 |
1 files changed, 1484 insertions, 1392 deletions
diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v index 060070c4..6e992aa3 100644 --- a/theories/Reals/Rtrigo.v +++ b/theories/Reals/Rtrigo.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rtrigo.v 6245 2004-10-20 13:50:08Z barras $ i*) +(*i $Id: Rtrigo.v 9245 2006-10-17 12:53:34Z notin $ i*) Require Import Rbase. Require Import Rfunctions. @@ -27,312 +27,356 @@ Axiom sin_PI2 : sin (PI / 2) = 1. (**********) Lemma PI_neq0 : PI <> 0. -red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0; - elim (Rlt_irrefl _ H0). +Proof. + red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0; + elim (Rlt_irrefl _ H0). Qed. (**********) Lemma cos_minus : forall x y:R, cos (x - y) = cos x * cos y + sin x * sin y. -intros; unfold Rminus in |- *; rewrite cos_plus. -rewrite <- cos_sym; rewrite sin_antisym; ring. +Proof. + intros; unfold Rminus in |- *; rewrite cos_plus. + rewrite <- cos_sym; rewrite sin_antisym; ring. Qed. (**********) Lemma sin2_cos2 : forall x:R, Rsqr (sin x) + Rsqr (cos x) = 1. -intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x); - unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0. +Proof. + intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x); + unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0. Qed. Lemma cos2 : forall x:R, Rsqr (cos x) = 1 - Rsqr (sin x). -intro x; generalize (sin2_cos2 x); intro H1; rewrite <- H1; - unfold Rminus in |- *; rewrite <- (Rplus_comm (Rsqr (cos x))); - rewrite Rplus_assoc; rewrite Rplus_opp_r; symmetry in |- *; - apply Rplus_0_r. +Proof. + intro x; generalize (sin2_cos2 x); intro H1; rewrite <- H1; + unfold Rminus in |- *; rewrite <- (Rplus_comm (Rsqr (cos x))); + rewrite Rplus_assoc; rewrite Rplus_opp_r; symmetry in |- *; + apply Rplus_0_r. Qed. (**********) Lemma cos_PI2 : cos (PI / 2) = 0. -apply Rsqr_eq_0; rewrite cos2; rewrite sin_PI2; rewrite Rsqr_1; - unfold Rminus in |- *; apply Rplus_opp_r. +Proof. + apply Rsqr_eq_0; rewrite cos2; rewrite sin_PI2; rewrite Rsqr_1; + unfold Rminus in |- *; apply Rplus_opp_r. Qed. (**********) Lemma cos_PI : cos PI = -1. -replace PI with (PI / 2 + PI / 2). -rewrite cos_plus. -rewrite sin_PI2; rewrite cos_PI2. -ring. -symmetry in |- *; apply double_var. +Proof. + replace PI with (PI / 2 + PI / 2). + rewrite cos_plus. + rewrite sin_PI2; rewrite cos_PI2. + ring. + symmetry in |- *; apply double_var. Qed. Lemma sin_PI : sin PI = 0. -assert (H := sin2_cos2 PI). -rewrite cos_PI in H. -rewrite <- Rsqr_neg in H. -rewrite Rsqr_1 in H. -cut (Rsqr (sin PI) = 0). -intro; apply (Rsqr_eq_0 _ H0). -apply Rplus_eq_reg_l with 1. -rewrite Rplus_0_r; rewrite Rplus_comm; exact H. +Proof. + assert (H := sin2_cos2 PI). + rewrite cos_PI in H. + rewrite <- Rsqr_neg in H. + rewrite Rsqr_1 in H. + cut (Rsqr (sin PI) = 0). + intro; apply (Rsqr_eq_0 _ H0). + apply Rplus_eq_reg_l with 1. + rewrite Rplus_0_r; rewrite Rplus_comm; exact H. Qed. (**********) Lemma neg_cos : forall x:R, cos (x + PI) = - cos x. -intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring. +Proof. + intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring. Qed. (**********) Lemma sin_cos : forall x:R, sin x = - cos (PI / 2 + x). -intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring. +Proof. + intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring. Qed. (**********) Lemma sin_plus : forall x y:R, sin (x + y) = sin x * cos y + cos x * sin y. -intros. -rewrite (sin_cos (x + y)). -replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ]. -rewrite (sin_cos (PI / 2 + x)). -replace (PI / 2 + (PI / 2 + x)) with (x + PI). -rewrite neg_cos. -replace (cos (PI / 2 + x)) with (- sin x). -ring. -rewrite sin_cos; rewrite Ropp_involutive; reflexivity. -pattern PI at 1 in |- *; rewrite (double_var PI); ring. +Proof. + intros. + rewrite (sin_cos (x + y)). + replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ]. + rewrite (sin_cos (PI / 2 + x)). + replace (PI / 2 + (PI / 2 + x)) with (x + PI). + rewrite neg_cos. + replace (cos (PI / 2 + x)) with (- sin x). + ring. + rewrite sin_cos; rewrite Ropp_involutive; reflexivity. + pattern PI at 1 in |- *; rewrite (double_var PI); ring. Qed. Lemma sin_minus : forall x y:R, sin (x - y) = sin x * cos y - cos x * sin y. -intros; unfold Rminus in |- *; rewrite sin_plus. -rewrite <- cos_sym; rewrite sin_antisym; ring. +Proof. + intros; unfold Rminus in |- *; rewrite sin_plus. + rewrite <- cos_sym; rewrite sin_antisym; ring. Qed. (**********) Definition tan (x:R) : R := sin x / cos x. Lemma tan_plus : - forall x y:R, - cos x <> 0 -> - cos y <> 0 -> - cos (x + y) <> 0 -> - 1 - tan x * tan y <> 0 -> - tan (x + y) = (tan x + tan y) / (1 - tan x * tan y). -intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus; - unfold Rdiv in |- *; - replace (cos x * cos y - sin x * sin y) with - (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))). -rewrite Rinv_mult_distr. -repeat rewrite <- Rmult_assoc; - replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with - (sin x * / cos x + sin y * / cos y). -reflexivity. -rewrite Rmult_plus_distr_r; rewrite Rinv_mult_distr. -repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x)); - repeat rewrite <- Rmult_assoc. -repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ]. -assumption. -assumption. -apply prod_neq_R0; assumption. -assumption. -unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r; - apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc; - rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y)); - rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc; - rewrite <- Rinv_r_sym. -rewrite Rmult_1_l; rewrite (Rmult_comm (sin x)); - rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc; - apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y)); - rewrite Rmult_assoc; rewrite <- Rinv_r_sym. -apply Rmult_1_r. -assumption. -assumption. + forall x y:R, + cos x <> 0 -> + cos y <> 0 -> + cos (x + y) <> 0 -> + 1 - tan x * tan y <> 0 -> + tan (x + y) = (tan x + tan y) / (1 - tan x * tan y). +Proof. + intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus; + unfold Rdiv in |- *; + replace (cos x * cos y - sin x * sin y) with + (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))). + rewrite Rinv_mult_distr. + repeat rewrite <- Rmult_assoc; + replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with + (sin x * / cos x + sin y * / cos y). + reflexivity. + rewrite Rmult_plus_distr_r; rewrite Rinv_mult_distr. + repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x)); + repeat rewrite <- Rmult_assoc. + repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ]. + assumption. + assumption. + apply prod_neq_R0; assumption. + assumption. + unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r; + apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc; + rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y)); + rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc; + rewrite <- Rinv_r_sym. + rewrite Rmult_1_l; rewrite (Rmult_comm (sin x)); + rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc; + apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y)); + rewrite Rmult_assoc; rewrite <- Rinv_r_sym. + apply Rmult_1_r. + assumption. + assumption. Qed. (*******************************************************) -(* Some properties of cos, sin and tan *) +(** * Some properties of cos, sin and tan *) (*******************************************************) Lemma sin2 : forall x:R, Rsqr (sin x) = 1 - Rsqr (cos x). -intro x; generalize (cos2 x); intro H1; rewrite H1. -unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; - rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry in |- *; - apply Ropp_involutive. +Proof. + intro x; generalize (cos2 x); intro H1; rewrite H1. + unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; + rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry in |- *; + apply Ropp_involutive. Qed. Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x. -intro x; rewrite double; rewrite sin_plus. -rewrite <- (Rmult_comm (sin x)); symmetry in |- *; rewrite Rmult_assoc; - apply double. +Proof. + intro x; rewrite double; rewrite sin_plus. + rewrite <- (Rmult_comm (sin x)); symmetry in |- *; rewrite Rmult_assoc; + apply double. Qed. Lemma cos_2a : forall x:R, cos (2 * x) = cos x * cos x - sin x * sin x. -intro x; rewrite double; apply cos_plus. +Proof. + intro x; rewrite double; apply cos_plus. Qed. Lemma cos_2a_cos : forall x:R, cos (2 * x) = 2 * cos x * cos x - 1. -intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc; - rewrite cos_plus; generalize (sin2_cos2 x); rewrite double; - intro H1; rewrite <- H1; ring_Rsqr. +Proof. + intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc; + rewrite cos_plus; generalize (sin2_cos2 x); rewrite double; + intro H1; rewrite <- H1; ring_Rsqr. Qed. Lemma cos_2a_sin : forall x:R, cos (2 * x) = 1 - 2 * sin x * sin x. -intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double. -generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus; - ring_Rsqr. +Proof. + intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double. + generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus; + ring_Rsqr. Qed. Lemma tan_2a : - forall x:R, - cos x <> 0 -> - cos (2 * x) <> 0 -> - 1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x). -repeat rewrite double; intros; repeat rewrite double; rewrite double in H0; - apply tan_plus; assumption. + forall x:R, + cos x <> 0 -> + cos (2 * x) <> 0 -> + 1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x). +Proof. + repeat rewrite double; intros; repeat rewrite double; rewrite double in H0; + apply tan_plus; assumption. Qed. Lemma sin_neg : forall x:R, sin (- x) = - sin x. -apply sin_antisym. +Proof. + apply sin_antisym. Qed. Lemma cos_neg : forall x:R, cos (- x) = cos x. -intro; symmetry in |- *; apply cos_sym. +Proof. + intro; symmetry in |- *; apply cos_sym. Qed. Lemma tan_0 : tan 0 = 0. -unfold tan in |- *; rewrite sin_0; rewrite cos_0. -unfold Rdiv in |- *; apply Rmult_0_l. +Proof. + unfold tan in |- *; rewrite sin_0; rewrite cos_0. + unfold Rdiv in |- *; apply Rmult_0_l. Qed. Lemma tan_neg : forall x:R, tan (- x) = - tan x. -intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg; - unfold Rdiv in |- *. -apply Ropp_mult_distr_l_reverse. +Proof. + intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg; + unfold Rdiv in |- *. + apply Ropp_mult_distr_l_reverse. Qed. Lemma tan_minus : - forall x y:R, - cos x <> 0 -> - cos y <> 0 -> - cos (x - y) <> 0 -> - 1 + tan x * tan y <> 0 -> - tan (x - y) = (tan x - tan y) / (1 + tan x * tan y). -intros; unfold Rminus in |- *; rewrite tan_plus. -rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; - rewrite Rmult_opp_opp; reflexivity. -assumption. -rewrite cos_neg; assumption. -assumption. -rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; - rewrite Rmult_opp_opp; assumption. + forall x y:R, + cos x <> 0 -> + cos y <> 0 -> + cos (x - y) <> 0 -> + 1 + tan x * tan y <> 0 -> + tan (x - y) = (tan x - tan y) / (1 + tan x * tan y). +Proof. + intros; unfold Rminus in |- *; rewrite tan_plus. + rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; + rewrite Rmult_opp_opp; reflexivity. + assumption. + rewrite cos_neg; assumption. + assumption. + rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; + rewrite Rmult_opp_opp; assumption. Qed. Lemma cos_3PI2 : cos (3 * (PI / 2)) = 0. -replace (3 * (PI / 2)) with (PI + PI / 2). -rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring. -pattern PI at 1 in |- *; rewrite (double_var PI). -ring. +Proof. + replace (3 * (PI / 2)) with (PI + PI / 2). + rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring. + pattern PI at 1 in |- *; rewrite (double_var PI). + ring. Qed. Lemma sin_2PI : sin (2 * PI) = 0. -rewrite sin_2a; rewrite sin_PI; ring. +Proof. + rewrite sin_2a; rewrite sin_PI; ring. Qed. Lemma cos_2PI : cos (2 * PI) = 1. -rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring. +Proof. + rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring. Qed. Lemma neg_sin : forall x:R, sin (x + PI) = - sin x. -intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring. +Proof. + intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring. Qed. Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x. -intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI; rewrite Rmult_0_l; - unfold Rminus in |- *; rewrite Rplus_0_l; rewrite Ropp_mult_distr_l_reverse; - rewrite Ropp_involutive; apply Rmult_1_l. +Proof. + intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI; rewrite Rmult_0_l; + unfold Rminus in |- *; rewrite Rplus_0_l; rewrite Ropp_mult_distr_l_reverse; + rewrite Ropp_involutive; apply Rmult_1_l. Qed. Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x. -intros x k; induction k as [| k Hreck]. -cut (x + 2 * INR 0 * PI = x); [ intro; rewrite H; reflexivity | ring ]. -replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI); - [ rewrite sin_plus; rewrite sin_2PI; rewrite cos_2PI; ring; apply Hreck - | rewrite S_INR; ring ]. +Proof. + intros x k; induction k as [| k Hreck]. + simpl in |- *; ring_simplify (x + 2 * 0 * PI). + trivial. + + replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI). + rewrite sin_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *. + ring_simplify; trivial. + rewrite S_INR in |- *; ring. Qed. Lemma cos_period : forall (x:R) (k:nat), cos (x + 2 * INR k * PI) = cos x. -intros x k; induction k as [| k Hreck]. -cut (x + 2 * INR 0 * PI = x); [ intro; rewrite H; reflexivity | ring ]. -replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI); - [ rewrite cos_plus; rewrite sin_2PI; rewrite cos_2PI; ring; apply Hreck - | rewrite S_INR; ring ]. +Proof. + intros x k; induction k as [| k Hreck]. + simpl in |- *; ring_simplify (x + 2 * 0 * PI). + trivial. + + replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI). + rewrite cos_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *. + ring_simplify; trivial. + rewrite S_INR in |- *; ring. Qed. Lemma sin_shift : forall x:R, sin (PI / 2 - x) = cos x. -intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring. +Proof. + intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring. Qed. Lemma cos_shift : forall x:R, cos (PI / 2 - x) = sin x. -intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring. +Proof. + intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring. Qed. Lemma cos_sin : forall x:R, cos x = sin (PI / 2 + x). -intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring. +Proof. + intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring. Qed. Lemma PI2_RGT_0 : 0 < PI / 2. -unfold Rdiv in |- *; apply Rmult_lt_0_compat; - [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ]. +Proof. + unfold Rdiv in |- *; apply Rmult_lt_0_compat; + [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ]. Qed. Lemma SIN_bound : forall x:R, -1 <= sin x <= 1. -intro; case (Rle_dec (-1) (sin x)); intro. -case (Rle_dec (sin x) 1); intro. -split; assumption. -cut (1 < sin x). -intro; - generalize - (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1) - (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H))); - rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0; - generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); - repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l; - rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; - generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); - repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); - intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). -auto with real. -cut (sin x < -1). -intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H); - rewrite Ropp_involutive; clear H; intro; - generalize - (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1) - (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H))); - rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0; - rewrite sin2 in H0; unfold Rminus in H0; - generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); - repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l; - rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; - generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); - repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); - intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). -auto with real. +Proof. + intro; case (Rle_dec (-1) (sin x)); intro. + case (Rle_dec (sin x) 1); intro. + split; assumption. + cut (1 < sin x). + intro; + generalize + (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1) + (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H))); + rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0; + generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); + repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l; + rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; + generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); + repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); + intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). + auto with real. + cut (sin x < -1). + intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H); + rewrite Ropp_involutive; clear H; intro; + generalize + (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1) + (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H))); + rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0; + rewrite sin2 in H0; unfold Rminus in H0; + generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); + repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l; + rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; + generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); + repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); + intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). + auto with real. Qed. Lemma COS_bound : forall x:R, -1 <= cos x <= 1. -intro; rewrite <- sin_shift; apply SIN_bound. +Proof. + intro; rewrite <- sin_shift; apply SIN_bound. Qed. Lemma cos_sin_0 : forall x:R, ~ (cos x = 0 /\ sin x = 0). -intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro; - rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2; - rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro; - rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3). +Proof. + intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro; + rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2; + rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro; + rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3). Qed. - + Lemma cos_sin_0_var : forall x:R, cos x <> 0 \/ sin x <> 0. -intro; apply not_and_or; apply cos_sin_0. +Proof. + intro; apply not_and_or; apply cos_sin_0. Qed. (*****************************************************************) -(* Using series definitions of cos and sin *) +(** * Using series definitions of cos and sin *) (*****************************************************************) Definition sin_lb (a:R) : R := sin_approx a 3. @@ -341,1367 +385,1415 @@ Definition cos_lb (a:R) : R := cos_approx a 3. Definition cos_ub (a:R) : R := cos_approx a 4. Lemma sin_lb_gt_0 : forall a:R, 0 < a -> a <= PI / 2 -> 0 < sin_lb a. -intros. -unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *. -set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))). -replace - (sum_f_R0 +Proof. + intros. + unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *. + set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))). + replace + (sum_f_R0 (fun i:nat => (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1)))) 3) - with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3); - [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ]. -cut (forall n:nat, Un (S n) < Un n). -intro; simpl in |- *. -repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r; - replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ]; - replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ]; - replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat); - [ idtac | ring ]; - replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with - (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ]. -apply Rplus_lt_0_compat. -unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 1%nat); - rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat)); - rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; - apply H1. -unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 3%nat); - rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat)); - rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; - apply H1. -intro; unfold Un in |- *. -cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat). -intro; rewrite H1. -rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc; - apply Rmult_lt_compat_l. -apply pow_lt; assumption. -rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))). -apply lt_INR_0; apply neq_O_lt. -assert (H2 := fact_neq_0 (2 * n + 1)). -red in |- *; intro; elim H2; symmetry in |- *; assumption. -rewrite <- Rinv_r_sym. -apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))). -apply lt_INR_0; apply neq_O_lt. -assert (H2 := fact_neq_0 (2 * S n + 1)). -red in |- *; intro; elim H2; symmetry in |- *; assumption. -rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc; - rewrite <- Rinv_l_sym. -do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4). -apply Rmult_le_compat_l. -replace 0 with (INR 0); [ idtac | reflexivity ]; apply le_INR; apply le_O_n. -simpl in |- *; rewrite Rmult_1_r; replace 4 with (Rsqr 2); - [ idtac | ring_Rsqr ]; replace (a * a) with (Rsqr a); - [ idtac | reflexivity ]; apply Rsqr_incr_1. -apply Rle_trans with (PI / 2); - [ assumption - | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2; - [ prove_sup0 - | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; - [ replace 4 with 4; [ apply PI_4 | ring ] | discrR ] ] ]. -left; assumption. -left; prove_sup0. -rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))). -do 2 rewrite fact_simpl; do 2 rewrite mult_INR. -repeat rewrite <- Rmult_assoc. -rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))). -rewrite Rmult_assoc. -apply Rmult_lt_compat_l. -apply lt_INR_0; apply neq_O_lt. -assert (H2 := fact_neq_0 (2 * n + 1)). -red in |- *; intro; elim H2; symmetry in |- *; assumption. -do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n); - unfold INR in |- *. -replace ((2 * x + 1 + 1 + 1) * (2 * x + 1 + 1)) with (4 * x * x + 10 * x + 6); - [ idtac | ring ]. -apply Rplus_lt_reg_r with (-4); rewrite Rplus_opp_l; - replace (-4 + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2); - [ idtac | ring ]. -apply Rplus_le_lt_0_compat. -cut (0 <= x). -intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos; - assumption || left; prove_sup. -unfold x in |- *; replace 0 with (INR 0); - [ apply le_INR; apply le_O_n | reflexivity ]. -prove_sup0. -apply INR_eq; do 2 rewrite S_INR; do 3 rewrite plus_INR; rewrite mult_INR; - repeat rewrite S_INR; ring. -apply INR_fact_neq_0. -apply INR_fact_neq_0. -apply INR_eq; do 3 rewrite plus_INR; do 2 rewrite mult_INR; - repeat rewrite S_INR; ring. + with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3); + [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ]. + cut (forall n:nat, Un (S n) < Un n). + intro; simpl in |- *. + repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r; + replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ]; + replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ]; + replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat); + [ idtac | ring ]; + replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with + (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ]. + apply Rplus_lt_0_compat. + unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 1%nat); + rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat)); + rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; + apply H1. + unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 3%nat); + rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat)); + rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; + apply H1. + intro; unfold Un in |- *. + cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat). + intro; rewrite H1. + rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc; + apply Rmult_lt_compat_l. + apply pow_lt; assumption. + rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))). + apply lt_INR_0; apply neq_O_lt. + assert (H2 := fact_neq_0 (2 * n + 1)). + red in |- *; intro; elim H2; symmetry in |- *; assumption. + rewrite <- Rinv_r_sym. + apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))). + apply lt_INR_0; apply neq_O_lt. + assert (H2 := fact_neq_0 (2 * S n + 1)). + red in |- *; intro; elim H2; symmetry in |- *; assumption. + rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc; + rewrite <- Rinv_l_sym. + do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4). + apply Rmult_le_compat_l. + replace 0 with (INR 0); [ idtac | reflexivity ]; apply le_INR; apply le_O_n. + simpl in |- *; rewrite Rmult_1_r; replace 4 with (Rsqr 2); + [ idtac | ring_Rsqr ]; replace (a * a) with (Rsqr a); + [ idtac | reflexivity ]; apply Rsqr_incr_1. + apply Rle_trans with (PI / 2); + [ assumption + | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2; + [ prove_sup0 + | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; + [ replace 4 with 4; [ apply PI_4 | ring ] | discrR ] ] ]. + left; assumption. + left; prove_sup0. + rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))). + do 2 rewrite fact_simpl; do 2 rewrite mult_INR. + repeat rewrite <- Rmult_assoc. + rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))). + rewrite Rmult_assoc. + apply Rmult_lt_compat_l. + apply lt_INR_0; apply neq_O_lt. + assert (H2 := fact_neq_0 (2 * n + 1)). + red in |- *; intro; elim H2; symmetry in |- *; assumption. + do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n); + unfold INR in |- *. + replace ((2 * x + 1 + 1 + 1) * (2 * x + 1 + 1)) with (4 * x * x + 10 * x + 6); + [ idtac | ring ]. + apply Rplus_lt_reg_r with (-4); rewrite Rplus_opp_l; + replace (-4 + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2); + [ idtac | ring ]. + apply Rplus_le_lt_0_compat. + cut (0 <= x). + intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos; + assumption || left; prove_sup. + unfold x in |- *; replace 0 with (INR 0); + [ apply le_INR; apply le_O_n | reflexivity ]. + prove_sup0. + ring_nat. + apply INR_fact_neq_0. + apply INR_fact_neq_0. + ring_nat. Qed. Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a. -intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0). + intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0). Qed. Lemma COS : - forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a. -intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0). + forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a. + intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0). Qed. (**********) Lemma _PI2_RLT_0 : - (PI / 2) < 0. -rewrite <- Ropp_0; apply Ropp_lt_contravar; apply PI2_RGT_0. +Proof. + rewrite <- Ropp_0; apply Ropp_lt_contravar; apply PI2_RGT_0. Qed. Lemma PI4_RLT_PI2 : PI / 4 < PI / 2. -unfold Rdiv in |- *; apply Rmult_lt_compat_l. -apply PI_RGT_0. -apply Rinv_lt_contravar. -apply Rmult_lt_0_compat; prove_sup0. -pattern 2 at 1 in |- *; rewrite <- Rplus_0_r. -replace 4 with (2 + 2); [ apply Rplus_lt_compat_l; prove_sup0 | ring ]. +Proof. + unfold Rdiv in |- *; apply Rmult_lt_compat_l. + apply PI_RGT_0. + apply Rinv_lt_contravar. + apply Rmult_lt_0_compat; prove_sup0. + pattern 2 at 1 in |- *; rewrite <- Rplus_0_r. + replace 4 with (2 + 2); [ apply Rplus_lt_compat_l; prove_sup0 | ring ]. Qed. Lemma PI2_Rlt_PI : PI / 2 < PI. -unfold Rdiv in |- *; pattern PI at 2 in |- *; rewrite <- Rmult_1_r. -apply Rmult_lt_compat_l. -apply PI_RGT_0. -pattern 1 at 3 in |- *; rewrite <- Rinv_1; apply Rinv_lt_contravar. -rewrite Rmult_1_l; prove_sup0. -pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; - apply Rlt_0_1. -Qed. - -(********************************************) -(* Increasing and decreasing of COS and SIN *) -(********************************************) +Proof. + unfold Rdiv in |- *; pattern PI at 2 in |- *; rewrite <- Rmult_1_r. + apply Rmult_lt_compat_l. + apply PI_RGT_0. + pattern 1 at 3 in |- *; rewrite <- Rinv_1; apply Rinv_lt_contravar. + rewrite Rmult_1_l; prove_sup0. + pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; + apply Rlt_0_1. +Qed. + +(***************************************************) +(** * Increasing and decreasing of [cos] and [sin] *) +(***************************************************) Theorem sin_gt_0 : forall x:R, 0 < x -> x < PI -> 0 < sin x. -intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _; - case (Rtotal_order x (PI / 2)); intro H2. -apply Rlt_le_trans with (sin_lb x). -apply sin_lb_gt_0; [ assumption | left; assumption ]. -assumption. -elim H2; intro H3. -rewrite H3; rewrite sin_PI2; apply Rlt_0_1. -rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3); - intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4). -replace (PI + - x) with (PI - x). -replace (PI + - (PI / 2)) with (PI / 2). -intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6; - change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6). -rewrite Rplus_opp_r. -replace (PI + - x) with (PI - x). -intro H7; - elim - (SIN (PI - x) (Rlt_le 0 (PI - x) H7) - (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI))); - intros H8 _; - generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5)); - intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8). -reflexivity. -pattern PI at 2 in |- *; rewrite double_var; ring. -reflexivity. +Proof. + intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _; + case (Rtotal_order x (PI / 2)); intro H2. + apply Rlt_le_trans with (sin_lb x). + apply sin_lb_gt_0; [ assumption | left; assumption ]. + assumption. + elim H2; intro H3. + rewrite H3; rewrite sin_PI2; apply Rlt_0_1. + rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3); + intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4). + replace (PI + - x) with (PI - x). + replace (PI + - (PI / 2)) with (PI / 2). + intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6; + change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6). + rewrite Rplus_opp_r. + replace (PI + - x) with (PI - x). + intro H7; + elim + (SIN (PI - x) (Rlt_le 0 (PI - x) H7) + (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI))); + intros H8 _; + generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5)); + intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8). + reflexivity. + pattern PI at 2 in |- *; rewrite double_var; ring. + reflexivity. Qed. Theorem cos_gt_0 : forall x:R, - (PI / 2) < x -> x < PI / 2 -> 0 < cos x. -intros; rewrite cos_sin; - generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H). -rewrite Rplus_opp_r; intro H1; - generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0); - rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2). +Proof. + intros; rewrite cos_sin; + generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H). + rewrite Rplus_opp_r; intro H1; + generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0); + rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2). Qed. Lemma sin_ge_0 : forall x:R, 0 <= x -> x <= PI -> 0 <= sin x. -intros x H1 H2; elim H1; intro H3; - [ elim H2; intro H4; - [ left; apply (sin_gt_0 x H3 H4) - | rewrite H4; right; symmetry in |- *; apply sin_PI ] - | rewrite <- H3; right; symmetry in |- *; apply sin_0 ]. +Proof. + intros x H1 H2; elim H1; intro H3; + [ elim H2; intro H4; + [ left; apply (sin_gt_0 x H3 H4) + | rewrite H4; right; symmetry in |- *; apply sin_PI ] + | rewrite <- H3; right; symmetry in |- *; apply sin_0 ]. Qed. Lemma cos_ge_0 : forall x:R, - (PI / 2) <= x -> x <= PI / 2 -> 0 <= cos x. -intros x H1 H2; elim H1; intro H3; - [ elim H2; intro H4; - [ left; apply (cos_gt_0 x H3 H4) - | rewrite H4; right; symmetry in |- *; apply cos_PI2 ] - | rewrite <- H3; rewrite cos_neg; right; symmetry in |- *; apply cos_PI2 ]. +Proof. + intros x H1 H2; elim H1; intro H3; + [ elim H2; intro H4; + [ left; apply (cos_gt_0 x H3 H4) + | rewrite H4; right; symmetry in |- *; apply cos_PI2 ] + | rewrite <- H3; rewrite cos_neg; right; symmetry in |- *; apply cos_PI2 ]. Qed. Lemma sin_le_0 : forall x:R, PI <= x -> x <= 2 * PI -> sin x <= 0. -intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; - rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar; - rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI); - [ rewrite (sin_period (x - PI) 1); apply sin_ge_0; - [ replace (x - PI) with (x + - PI); - [ rewrite Rplus_comm; replace 0 with (- PI + PI); - [ apply Rplus_le_compat_l; assumption | ring ] - | ring ] - | replace (x - PI) with (x + - PI); rewrite Rplus_comm; - [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); - [ apply Rplus_le_compat_l; assumption | ring ] - | ring ] ] - | unfold INR in |- *; ring ]. +Proof. + intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; + rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar; + rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI); + [ rewrite (sin_period (x - PI) 1); apply sin_ge_0; + [ replace (x - PI) with (x + - PI); + [ rewrite Rplus_comm; replace 0 with (- PI + PI); + [ apply Rplus_le_compat_l; assumption | ring ] + | ring ] + | replace (x - PI) with (x + - PI); rewrite Rplus_comm; + [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); + [ apply Rplus_le_compat_l; assumption | ring ] + | ring ] ] + | unfold INR in |- *; ring ]. Qed. Lemma cos_le_0 : forall x:R, PI / 2 <= x -> x <= 3 * (PI / 2) -> cos x <= 0. -intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; - rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar; - rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI). -rewrite cos_period; apply cos_ge_0. -replace (- (PI / 2)) with (- PI + PI / 2). -unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l; - assumption. -pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; - ring. -unfold Rminus in |- *; rewrite Rplus_comm; - replace (PI / 2) with (- PI + 3 * (PI / 2)). -apply Rplus_le_compat_l; assumption. -pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; - ring. -unfold INR in |- *; ring. +Proof. + intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; + rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar; + rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI). + rewrite cos_period; apply cos_ge_0. + replace (- (PI / 2)) with (- PI + PI / 2). + unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l; + assumption. + pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; + ring. + unfold Rminus in |- *; rewrite Rplus_comm; + replace (PI / 2) with (- PI + 3 * (PI / 2)). + apply Rplus_le_compat_l; assumption. + pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; + ring. + unfold INR in |- *; ring. Qed. Lemma sin_lt_0 : forall x:R, PI < x -> x < 2 * PI -> sin x < 0. -intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x)); - apply Ropp_lt_gt_contravar; rewrite <- neg_sin; - replace (x + PI) with (x - PI + 2 * INR 1 * PI); - [ rewrite (sin_period (x - PI) 1); apply sin_gt_0; - [ replace (x - PI) with (x + - PI); - [ rewrite Rplus_comm; replace 0 with (- PI + PI); - [ apply Rplus_lt_compat_l; assumption | ring ] - | ring ] - | replace (x - PI) with (x + - PI); rewrite Rplus_comm; - [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); - [ apply Rplus_lt_compat_l; assumption | ring ] - | ring ] ] - | unfold INR in |- *; ring ]. +Proof. + intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x)); + apply Ropp_lt_gt_contravar; rewrite <- neg_sin; + replace (x + PI) with (x - PI + 2 * INR 1 * PI); + [ rewrite (sin_period (x - PI) 1); apply sin_gt_0; + [ replace (x - PI) with (x + - PI); + [ rewrite Rplus_comm; replace 0 with (- PI + PI); + [ apply Rplus_lt_compat_l; assumption | ring ] + | ring ] + | replace (x - PI) with (x + - PI); rewrite Rplus_comm; + [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); + [ apply Rplus_lt_compat_l; assumption | ring ] + | ring ] ] + | unfold INR in |- *; ring ]. Qed. Lemma sin_lt_0_var : forall x:R, - PI < x -> x < 0 -> sin x < 0. -intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H); - replace (2 * PI + - PI) with PI; - [ intro H1; rewrite Rplus_comm in H1; - generalize (Rplus_lt_compat_l (2 * PI) x 0 H0); - intro H2; rewrite (Rplus_comm (2 * PI)) in H2; - rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2; - rewrite <- (sin_period x 1); unfold INR in |- *; - replace (2 * 1 * PI) with (2 * PI); - [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ] - | ring ]. +Proof. + intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H); + replace (2 * PI + - PI) with PI; + [ intro H1; rewrite Rplus_comm in H1; + generalize (Rplus_lt_compat_l (2 * PI) x 0 H0); + intro H2; rewrite (Rplus_comm (2 * PI)) in H2; + rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2; + rewrite <- (sin_period x 1); unfold INR in |- *; + replace (2 * 1 * PI) with (2 * PI); + [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ] + | ring ]. Qed. Lemma cos_lt_0 : forall x:R, PI / 2 < x -> x < 3 * (PI / 2) -> cos x < 0. -intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x)); - apply Ropp_lt_gt_contravar; rewrite <- neg_cos; - replace (x + PI) with (x - PI + 2 * INR 1 * PI). -rewrite cos_period; apply cos_gt_0. -replace (- (PI / 2)) with (- PI + PI / 2). -unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l; - assumption. -pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; - ring. -unfold Rminus in |- *; rewrite Rplus_comm; - replace (PI / 2) with (- PI + 3 * (PI / 2)). -apply Rplus_lt_compat_l; assumption. -pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; - ring. -unfold INR in |- *; ring. +Proof. + intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x)); + apply Ropp_lt_gt_contravar; rewrite <- neg_cos; + replace (x + PI) with (x - PI + 2 * INR 1 * PI). + rewrite cos_period; apply cos_gt_0. + replace (- (PI / 2)) with (- PI + PI / 2). + unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l; + assumption. + pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; + ring. + unfold Rminus in |- *; rewrite Rplus_comm; + replace (PI / 2) with (- PI + 3 * (PI / 2)). + apply Rplus_lt_compat_l; assumption. + pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; + ring. + unfold INR in |- *; ring. Qed. Lemma tan_gt_0 : forall x:R, 0 < x -> x < PI / 2 -> 0 < tan x. -intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0; - generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros; - generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5; - generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI); - intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat. -apply sin_gt_0; assumption. -apply Rinv_0_lt_compat; apply cos_gt_0; assumption. +Proof. + intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0; + generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros; + generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5; + generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI); + intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat. + apply sin_gt_0; assumption. + apply Rinv_0_lt_compat; apply cos_gt_0; assumption. Qed. Lemma tan_lt_0 : forall x:R, - (PI / 2) < x -> x < 0 -> tan x < 0. -intros x H1 H2; unfold tan in |- *; - generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0)); - intro H3; rewrite <- Ropp_0; - replace (sin x / cos x) with (- (- sin x / cos x)). -rewrite <- sin_neg; apply Ropp_gt_lt_contravar; - change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *; - apply Rmult_lt_0_compat. -apply sin_gt_0. -rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption. -apply Rlt_trans with (PI / 2). -rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption. -apply PI2_Rlt_PI. -apply Rinv_0_lt_compat; assumption. -unfold Rdiv in |- *; ring. +Proof. + intros x H1 H2; unfold tan in |- *; + generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0)); + intro H3; rewrite <- Ropp_0; + replace (sin x / cos x) with (- (- sin x / cos x)). + rewrite <- sin_neg; apply Ropp_gt_lt_contravar; + change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *; + apply Rmult_lt_0_compat. + apply sin_gt_0. + rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption. + apply Rlt_trans with (PI / 2). + rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption. + apply PI2_Rlt_PI. + apply Rinv_0_lt_compat; assumption. + unfold Rdiv in |- *; ring. Qed. Lemma cos_ge_0_3PI2 : - forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x. -intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1); - unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x). -generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1; - generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1; - intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1). -rewrite Rplus_opp_r. -intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3; - generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3; - intro H3; - generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3). -replace (2 * PI + - (3 * (PI / 2))) with (PI / 2). -intro H4; - apply - (cos_ge_0 (2 * PI - x) - (Rlt_le (- (PI / 2)) (2 * PI - x) - (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4). -rewrite double; pattern PI at 2 3 in |- *; rewrite double_var; ring. -ring. + forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x. +Proof. + intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1); + unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x). + generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1; + generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1; + intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1). + rewrite Rplus_opp_r. + intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3; + generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3; + intro H3; + generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3). + replace (2 * PI + - (3 * (PI / 2))) with (PI / 2). + intro H4; + apply + (cos_ge_0 (2 * PI - x) + (Rlt_le (- (PI / 2)) (2 * PI - x) + (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4). + rewrite double; pattern PI at 2 3 in |- *; rewrite double_var; ring. + ring. Qed. Lemma form1 : - forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2). -intros p q; pattern p at 1 in |- *; - replace p with ((p - q) / 2 + (p + q) / 2). -rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2). -rewrite cos_plus; rewrite cos_minus; ring. -pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. -pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2). +Proof. + intros p q; pattern p at 1 in |- *; + replace p with ((p - q) / 2 + (p + q) / 2). + rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2). + rewrite cos_plus; rewrite cos_minus; ring. + pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. Qed. Lemma form2 : - forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2). -intros p q; pattern p at 1 in |- *; - replace p with ((p - q) / 2 + (p + q) / 2). -rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2). -rewrite cos_plus; rewrite cos_minus; ring. -pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. -pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2). +Proof. + intros p q; pattern p at 1 in |- *; + replace p with ((p - q) / 2 + (p + q) / 2). + rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2). + rewrite cos_plus; rewrite cos_minus; ring. + pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. Qed. Lemma form3 : - forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2). -intros p q; pattern p at 1 in |- *; - replace p with ((p - q) / 2 + (p + q) / 2). -pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). -rewrite sin_plus; rewrite sin_minus; ring. -pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. -pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2). +Proof. + intros p q; pattern p at 1 in |- *; + replace p with ((p - q) / 2 + (p + q) / 2). + pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). + rewrite sin_plus; rewrite sin_minus; ring. + pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. Qed. Lemma form4 : - forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2). -intros p q; pattern p at 1 in |- *; - replace p with ((p - q) / 2 + (p + q) / 2). -pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). -rewrite sin_plus; rewrite sin_minus; ring. -pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. -pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2). +Proof. + intros p q; pattern p at 1 in |- *; + replace p with ((p - q) / 2 + (p + q) / 2). + pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). + rewrite sin_plus; rewrite sin_minus; ring. + pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. Qed. Lemma sin_increasing_0 : - forall x y:R, - - (PI / 2) <= x -> - x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y. -intros; cut (sin ((x - y) / 2) < 0). -intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5. -assert (Hyp : 0 < 2). -prove_sup0. -generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5). -unfold Rdiv in |- *. -rewrite <- Rmult_assoc. -rewrite Rinv_r_simpl_m. -rewrite Rmult_0_r. -clear H5; intro H5; apply Rminus_lt; assumption. -discrR. -elim H5; intro H6. -rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4). -change (0 < (x - y) / 2) in H6; - generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1). -rewrite Ropp_involutive. -intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7; - generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7). -rewrite <- double_var. -intro H8. -assert (Hyp : 0 < 2). -prove_sup0. -generalize - (Rmult_le_compat_l (/ 2) (x - y) PI - (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8). -repeat rewrite (Rmult_comm (/ 2)). -intro H9; - generalize - (sin_gt_0 ((x - y) / 2) H6 - (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI)); - intro H10; - elim - (Rlt_irrefl (sin ((x - y) / 2)) - (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)). -generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3; - rewrite form4 in H3; - generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2). -rewrite <- double_var. -assert (Hyp : 0 < 2). -prove_sup0. -intro H4; - generalize - (Rmult_le_compat_l (/ 2) (x + y) PI - (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4). -repeat rewrite (Rmult_comm (/ 2)). -clear H4; intro H4; - generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1); - replace (- (PI / 2) + - (PI / 2)) with (- PI). -intro H5; - generalize - (Rmult_le_compat_l (/ 2) (- PI) (x + y) - (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5). -replace (/ 2 * (x + y)) with ((x + y) / 2). -replace (/ 2 * - PI) with (- (PI / 2)). -clear H5; intro H5; elim H4; intro H40. -elim H5; intro H50. -generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6; - generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6). -rewrite Rmult_0_r. -clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7. -assumption. -generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7; - generalize - (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2)) - (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8; - generalize - (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3); - intro H9; elim (Rlt_irrefl 0 H9). -rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3; - rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; - elim (Rlt_irrefl 0 H3). -unfold Rdiv in H3. -rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50; - rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; - elim (Rlt_irrefl 0 H3). -unfold Rdiv in |- *. -rewrite <- Ropp_mult_distr_l_reverse. -apply Rmult_comm. -unfold Rdiv in |- *; apply Rmult_comm. -pattern PI at 1 in |- *; rewrite double_var. -rewrite Ropp_plus_distr. -reflexivity. + forall x y:R, + - (PI / 2) <= x -> + x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y. +Proof. + intros; cut (sin ((x - y) / 2) < 0). + intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5. + assert (Hyp : 0 < 2). + prove_sup0. + generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5). + unfold Rdiv in |- *. + rewrite <- Rmult_assoc. + rewrite Rinv_r_simpl_m. + rewrite Rmult_0_r. + clear H5; intro H5; apply Rminus_lt; assumption. + discrR. + elim H5; intro H6. + rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4). + change (0 < (x - y) / 2) in H6; + generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1). + rewrite Ropp_involutive. + intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7; + generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7). + rewrite <- double_var. + intro H8. + assert (Hyp : 0 < 2). + prove_sup0. + generalize + (Rmult_le_compat_l (/ 2) (x - y) PI + (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8). + repeat rewrite (Rmult_comm (/ 2)). + intro H9; + generalize + (sin_gt_0 ((x - y) / 2) H6 + (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI)); + intro H10; + elim + (Rlt_irrefl (sin ((x - y) / 2)) + (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)). + generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3; + rewrite form4 in H3; + generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2). + rewrite <- double_var. + assert (Hyp : 0 < 2). + prove_sup0. + intro H4; + generalize + (Rmult_le_compat_l (/ 2) (x + y) PI + (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4). + repeat rewrite (Rmult_comm (/ 2)). + clear H4; intro H4; + generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1); + replace (- (PI / 2) + - (PI / 2)) with (- PI). + intro H5; + generalize + (Rmult_le_compat_l (/ 2) (- PI) (x + y) + (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5). + replace (/ 2 * (x + y)) with ((x + y) / 2). + replace (/ 2 * - PI) with (- (PI / 2)). + clear H5; intro H5; elim H4; intro H40. + elim H5; intro H50. + generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6; + generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6). + rewrite Rmult_0_r. + clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7. + assumption. + generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7; + generalize + (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2)) + (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8; + generalize + (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3); + intro H9; elim (Rlt_irrefl 0 H9). + rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3; + rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; + elim (Rlt_irrefl 0 H3). + unfold Rdiv in H3. + rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50; + rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; + elim (Rlt_irrefl 0 H3). + unfold Rdiv in |- *. + rewrite <- Ropp_mult_distr_l_reverse. + apply Rmult_comm. + unfold Rdiv in |- *; apply Rmult_comm. + pattern PI at 1 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + reflexivity. Qed. Lemma sin_increasing_1 : - forall x y:R, - - (PI / 2) <= x -> - x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y. -intros; generalize (Rplus_lt_compat_l x x y H3); intro H4; - generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H); - replace (- (PI / 2) + - (PI / 2)) with (- PI). -assert (Hyp : 0 < 2). -prove_sup0. -intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6; - generalize - (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6); - replace (/ 2 * - PI) with (- (PI / 2)). -replace (/ 2 * (x + y)) with ((x + y) / 2). -clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5; - rewrite Rplus_comm in H5; - generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2). -rewrite <- double_var. -intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7; - generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7); - replace (/ 2 * PI) with (PI / 2). -replace (/ 2 * (x + y)) with ((x + y) / 2). -clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1); - rewrite Ropp_involutive; clear H1; intro H1; - generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1; - generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2; - intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2); - clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3); - replace (- y + x) with (x - y). -rewrite Rplus_opp_l. -intro H6; - generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6); - rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2). -clear H6; intro H6; - generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2); - replace (- (PI / 2) + - (PI / 2)) with (- PI). -replace (x + - y) with (x - y). -intro H7; - generalize - (Rmult_le_compat_l (/ 2) (- PI) (x - y) - (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7); - replace (/ 2 * - PI) with (- (PI / 2)). -replace (/ 2 * (x - y)) with ((x - y) / 2). -clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4; - generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8; - generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8); - clear H8; intro H8; cut (- PI < - (PI / 2)). -intro H9; - generalize - (sin_lt_0_var ((x - y) / 2) - (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6); - intro H10; - generalize - (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 ( - 2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11; - rewrite Rmult_comm; assumption. -apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI. -unfold Rdiv in |- *; apply Rmult_comm. -unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_comm. -reflexivity. -pattern PI at 1 in |- *; rewrite double_var. -rewrite Ropp_plus_distr. -reflexivity. -unfold Rdiv in |- *; apply Rmult_comm. -unfold Rminus in |- *; apply Rplus_comm. -unfold Rdiv in |- *; apply Rmult_comm. -unfold Rdiv in |- *; apply Rmult_comm. -unfold Rdiv in |- *; apply Rmult_comm. -unfold Rdiv in |- *. -rewrite <- Ropp_mult_distr_l_reverse. -apply Rmult_comm. -pattern PI at 1 in |- *; rewrite double_var. -rewrite Ropp_plus_distr. -reflexivity. + forall x y:R, + - (PI / 2) <= x -> + x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y. +Proof. + intros; generalize (Rplus_lt_compat_l x x y H3); intro H4; + generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H); + replace (- (PI / 2) + - (PI / 2)) with (- PI). + assert (Hyp : 0 < 2). + prove_sup0. + intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6; + generalize + (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6); + replace (/ 2 * - PI) with (- (PI / 2)). + replace (/ 2 * (x + y)) with ((x + y) / 2). + clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5; + rewrite Rplus_comm in H5; + generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2). + rewrite <- double_var. + intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7; + generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7); + replace (/ 2 * PI) with (PI / 2). + replace (/ 2 * (x + y)) with ((x + y) / 2). + clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1); + rewrite Ropp_involutive; clear H1; intro H1; + generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1; + generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2; + intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2); + clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3); + replace (- y + x) with (x - y). + rewrite Rplus_opp_l. + intro H6; + generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6); + rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2). + clear H6; intro H6; + generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2); + replace (- (PI / 2) + - (PI / 2)) with (- PI). + replace (x + - y) with (x - y). + intro H7; + generalize + (Rmult_le_compat_l (/ 2) (- PI) (x - y) + (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7); + replace (/ 2 * - PI) with (- (PI / 2)). + replace (/ 2 * (x - y)) with ((x - y) / 2). + clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4; + generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8; + generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8); + clear H8; intro H8; cut (- PI < - (PI / 2)). + intro H9; + generalize + (sin_lt_0_var ((x - y) / 2) + (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6); + intro H10; + generalize + (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 ( + 2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11; + rewrite Rmult_comm; assumption. + apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_comm. + reflexivity. + pattern PI at 1 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + reflexivity. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rminus in |- *; apply Rplus_comm. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rdiv in |- *. + rewrite <- Ropp_mult_distr_l_reverse. + apply Rmult_comm. + pattern PI at 1 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + reflexivity. Qed. Lemma sin_decreasing_0 : - forall x y:R, - x <= 3 * (PI / 2) -> - PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x. -intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3; - generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3); - repeat rewrite <- sin_neg; - generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); - generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); - generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); - generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); - replace (- PI + x) with (x - PI). -replace (- PI + PI / 2) with (- (PI / 2)). -replace (- PI + y) with (y - PI). -replace (- PI + 3 * (PI / 2)) with (PI / 2). -replace (- (PI - x)) with (x - PI). -replace (- (PI - y)) with (y - PI). -intros; change (sin (y - PI) < sin (x - PI)) in H8; - apply Rplus_lt_reg_r with (- PI); rewrite Rplus_comm; - replace (y + - PI) with (y - PI). -rewrite Rplus_comm; replace (x + - PI) with (x - PI). -apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8). -reflexivity. -reflexivity. -unfold Rminus in |- *; rewrite Ropp_plus_distr. -rewrite Ropp_involutive. -apply Rplus_comm. -unfold Rminus in |- *; rewrite Ropp_plus_distr. -rewrite Ropp_involutive. -apply Rplus_comm. -pattern PI at 2 in |- *; rewrite double_var. -rewrite Ropp_plus_distr. -ring. -unfold Rminus in |- *; apply Rplus_comm. -pattern PI at 2 in |- *; rewrite double_var. -rewrite Ropp_plus_distr. -ring. -unfold Rminus in |- *; apply Rplus_comm. + forall x y:R, + x <= 3 * (PI / 2) -> + PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x. +Proof. + intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3; + generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3); + repeat rewrite <- sin_neg; + generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); + generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); + generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); + generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); + replace (- PI + x) with (x - PI). + replace (- PI + PI / 2) with (- (PI / 2)). + replace (- PI + y) with (y - PI). + replace (- PI + 3 * (PI / 2)) with (PI / 2). + replace (- (PI - x)) with (x - PI). + replace (- (PI - y)) with (y - PI). + intros; change (sin (y - PI) < sin (x - PI)) in H8; + apply Rplus_lt_reg_r with (- PI); rewrite Rplus_comm; + replace (y + - PI) with (y - PI). + rewrite Rplus_comm; replace (x + - PI) with (x - PI). + apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8). + reflexivity. + reflexivity. + unfold Rminus in |- *; rewrite Ropp_plus_distr. + rewrite Ropp_involutive. + apply Rplus_comm. + unfold Rminus in |- *; rewrite Ropp_plus_distr. + rewrite Ropp_involutive. + apply Rplus_comm. + pattern PI at 2 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + ring. + unfold Rminus in |- *; apply Rplus_comm. + pattern PI at 2 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + ring. + unfold Rminus in |- *; apply Rplus_comm. Qed. Lemma sin_decreasing_1 : - forall x y:R, - x <= 3 * (PI / 2) -> - PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x. -intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y); - generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); - generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); - generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); - generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); - generalize (Rplus_lt_compat_l (- PI) x y H3); - replace (- PI + PI / 2) with (- (PI / 2)). -replace (- PI + y) with (y - PI). -replace (- PI + 3 * (PI / 2)) with (PI / 2). -replace (- PI + x) with (x - PI). -intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg; - replace (- (PI - x)) with (x - PI). -replace (- (PI - y)) with (y - PI). -apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4). -unfold Rminus in |- *; rewrite Ropp_plus_distr. -rewrite Ropp_involutive. -apply Rplus_comm. -unfold Rminus in |- *; rewrite Ropp_plus_distr. -rewrite Ropp_involutive. -apply Rplus_comm. -unfold Rminus in |- *; apply Rplus_comm. -pattern PI at 2 in |- *; rewrite double_var; ring. -unfold Rminus in |- *; apply Rplus_comm. -pattern PI at 2 in |- *; rewrite double_var; ring. + forall x y:R, + x <= 3 * (PI / 2) -> + PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x. +Proof. + intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y); + generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); + generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); + generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); + generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); + generalize (Rplus_lt_compat_l (- PI) x y H3); + replace (- PI + PI / 2) with (- (PI / 2)). + replace (- PI + y) with (y - PI). + replace (- PI + 3 * (PI / 2)) with (PI / 2). + replace (- PI + x) with (x - PI). + intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg; + replace (- (PI - x)) with (x - PI). + replace (- (PI - y)) with (y - PI). + apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4). + unfold Rminus in |- *; rewrite Ropp_plus_distr. + rewrite Ropp_involutive. + apply Rplus_comm. + unfold Rminus in |- *; rewrite Ropp_plus_distr. + rewrite Ropp_involutive. + apply Rplus_comm. + unfold Rminus in |- *; apply Rplus_comm. + pattern PI at 2 in |- *; rewrite double_var; ring. + unfold Rminus in |- *; apply Rplus_comm. + pattern PI at 2 in |- *; rewrite double_var; ring. Qed. Lemma cos_increasing_0 : - forall x y:R, - PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y. -intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y); - rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); - unfold INR in |- *; - replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). -replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). -repeat rewrite cos_shift; intro H5; - generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4). -replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). -replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). -replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). -replace (-3 * (PI / 2) + PI) with (- (PI / 2)). -clear H1 H2 H3 H4; intros H1 H2 H3 H4; - apply Rplus_lt_reg_r with (-3 * (PI / 2)); - replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). -replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). -apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5). -unfold Rminus in |- *. -rewrite Ropp_mult_distr_l_reverse. -apply Rplus_comm. -unfold Rminus in |- *. -rewrite Ropp_mult_distr_l_reverse. -apply Rplus_comm. -pattern PI at 3 in |- *; rewrite double_var. -ring. -rewrite double; pattern PI at 3 4 in |- *; rewrite double_var. -ring. -unfold Rminus in |- *. -rewrite Ropp_mult_distr_l_reverse. -apply Rplus_comm. -unfold Rminus in |- *. -rewrite Ropp_mult_distr_l_reverse. -apply Rplus_comm. -rewrite Rmult_1_r. -rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. -ring. -rewrite Rmult_1_r. -rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. -ring. + forall x y:R, + PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y. +Proof. + intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y); + rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); + unfold INR in |- *; + replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). + replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). + repeat rewrite cos_shift; intro H5; + generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4). + replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). + replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). + replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). + replace (-3 * (PI / 2) + PI) with (- (PI / 2)). + clear H1 H2 H3 H4; intros H1 H2 H3 H4; + apply Rplus_lt_reg_r with (-3 * (PI / 2)); + replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). + replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). + apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5). + unfold Rminus in |- *. + rewrite Ropp_mult_distr_l_reverse. + apply Rplus_comm. + unfold Rminus in |- *. + rewrite Ropp_mult_distr_l_reverse. + apply Rplus_comm. + pattern PI at 3 in |- *; rewrite double_var. + ring. + rewrite double; pattern PI at 3 4 in |- *; rewrite double_var. + ring. + unfold Rminus in |- *. + rewrite Ropp_mult_distr_l_reverse. + apply Rplus_comm. + unfold Rminus in |- *. + rewrite Ropp_mult_distr_l_reverse. + apply Rplus_comm. + rewrite Rmult_1_r. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. + rewrite Rmult_1_r. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. Qed. Lemma cos_increasing_1 : - forall x y:R, - PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y. -intros x y H1 H2 H3 H4 H5; - generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4); - generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5); - rewrite <- (cos_neg x); rewrite <- (cos_neg y); - rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); - unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). -replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). -replace (-3 * (PI / 2) + PI) with (- (PI / 2)). -replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). -clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5; - replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). -replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). -repeat rewrite cos_shift; - apply - (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1). -rewrite Rmult_1_r. -rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. -ring. -rewrite Rmult_1_r. -rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. -ring. -rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. -ring. -pattern PI at 3 in |- *; rewrite double_var; ring. -unfold Rminus in |- *. -rewrite <- Ropp_mult_distr_l_reverse. -apply Rplus_comm. -unfold Rminus in |- *. -rewrite <- Ropp_mult_distr_l_reverse. -apply Rplus_comm. + forall x y:R, + PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y. +Proof. + intros x y H1 H2 H3 H4 H5; + generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4); + generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5); + rewrite <- (cos_neg x); rewrite <- (cos_neg y); + rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); + unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). + replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). + replace (-3 * (PI / 2) + PI) with (- (PI / 2)). + replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). + clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5; + replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). + replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). + repeat rewrite cos_shift; + apply + (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1). + rewrite Rmult_1_r. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. + rewrite Rmult_1_r. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. + pattern PI at 3 in |- *; rewrite double_var; ring. + unfold Rminus in |- *. + rewrite <- Ropp_mult_distr_l_reverse. + apply Rplus_comm. + unfold Rminus in |- *. + rewrite <- Ropp_mult_distr_l_reverse. + apply Rplus_comm. Qed. Lemma cos_decreasing_0 : - forall x y:R, - 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x. -intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3); - repeat rewrite <- neg_cos; intro H4; - change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4; - rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H); - generalize (Rplus_le_compat_l PI x PI H0); - generalize (Rplus_le_compat_l PI 0 y H1); - generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. -rewrite <- double. -clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_r with PI; - apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4). + forall x y:R, + 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x. +Proof. + intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3); + repeat rewrite <- neg_cos; intro H4; + change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4; + rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H); + generalize (Rplus_le_compat_l PI x PI H0); + generalize (Rplus_le_compat_l PI 0 y H1); + generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. + rewrite <- double. + clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_r with PI; + apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4). Qed. Lemma cos_decreasing_1 : - forall x y:R, - 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x. -intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos; - rewrite (Rplus_comm x); rewrite (Rplus_comm y); - generalize (Rplus_le_compat_l PI 0 x H); - generalize (Rplus_le_compat_l PI x PI H0); - generalize (Rplus_le_compat_l PI 0 y H1); - generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. -rewrite <- double. -generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros; - apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H). + forall x y:R, + 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x. +Proof. + intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos; + rewrite (Rplus_comm x); rewrite (Rplus_comm y); + generalize (Rplus_le_compat_l PI 0 x H); + generalize (Rplus_le_compat_l PI x PI H0); + generalize (Rplus_le_compat_l PI 0 y H1); + generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. + rewrite <- double. + generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros; + apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H). Qed. Lemma tan_diff : - forall x y:R, - cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y). -intros; unfold tan in |- *; rewrite sin_minus. -unfold Rdiv in |- *. -unfold Rminus in |- *. -rewrite Rmult_plus_distr_r. -rewrite Rinv_mult_distr. -repeat rewrite (Rmult_comm (sin x)). -repeat rewrite Rmult_assoc. -rewrite (Rmult_comm (cos y)). -repeat rewrite Rmult_assoc. -rewrite <- Rinv_l_sym. -rewrite Rmult_1_r. -rewrite (Rmult_comm (sin x)). -apply Rplus_eq_compat_l. -rewrite <- Ropp_mult_distr_l_reverse. -rewrite <- Ropp_mult_distr_r_reverse. -rewrite (Rmult_comm (/ cos x)). -repeat rewrite Rmult_assoc. -rewrite (Rmult_comm (cos x)). -repeat rewrite Rmult_assoc. -rewrite <- Rinv_l_sym. -rewrite Rmult_1_r. -reflexivity. -assumption. -assumption. -assumption. -assumption. + forall x y:R, + cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y). +Proof. + intros; unfold tan in |- *; rewrite sin_minus. + unfold Rdiv in |- *. + unfold Rminus in |- *. + rewrite Rmult_plus_distr_r. + rewrite Rinv_mult_distr. + repeat rewrite (Rmult_comm (sin x)). + repeat rewrite Rmult_assoc. + rewrite (Rmult_comm (cos y)). + repeat rewrite Rmult_assoc. + rewrite <- Rinv_l_sym. + rewrite Rmult_1_r. + rewrite (Rmult_comm (sin x)). + apply Rplus_eq_compat_l. + rewrite <- Ropp_mult_distr_l_reverse. + rewrite <- Ropp_mult_distr_r_reverse. + rewrite (Rmult_comm (/ cos x)). + repeat rewrite Rmult_assoc. + rewrite (Rmult_comm (cos x)). + repeat rewrite Rmult_assoc. + rewrite <- Rinv_l_sym. + rewrite Rmult_1_r. + reflexivity. + assumption. + assumption. + assumption. + assumption. Qed. Lemma tan_increasing_0 : - forall x y:R, - - (PI / 4) <= x -> - x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y. -intros; generalize PI4_RLT_PI2; intro H4; - generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); - intro H5; change (- (PI / 2) < - (PI / 4)) in H5; - generalize - (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) - (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; - generalize - (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) - (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; - generalize - (sym_not_eq - (Rlt_not_eq 0 (cos x) - (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) - (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); - intro H6; - generalize - (sym_not_eq - (Rlt_not_eq 0 (cos y) - (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) - (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); - intro H7; generalize (tan_diff x y H6 H7); intro H8; - generalize (Rlt_minus (tan x) (tan y) H3); clear H3; - intro H3; rewrite H8 in H3; cut (sin (x - y) < 0). -intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1); - rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10); - clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2); - intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); - clear H11; intro H11; - generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); - generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10); - replace (x + - y) with (x - y). -replace (PI / 4 + PI / 4) with (PI / 2). -replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)). -intros; case (Rtotal_order 0 (x - y)); intro H14. -generalize - (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI)); - intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)). -elim H14; intro H15. -rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9). -apply Rminus_lt; assumption. -pattern PI at 1 in |- *; rewrite double_var. -unfold Rdiv in |- *. -rewrite Rmult_plus_distr_r. -repeat rewrite Rmult_assoc. -rewrite <- Rinv_mult_distr. -rewrite Ropp_plus_distr. -replace 4 with 4. -reflexivity. -ring. -discrR. -discrR. -pattern PI at 1 in |- *; rewrite double_var. -unfold Rdiv in |- *. -rewrite Rmult_plus_distr_r. -repeat rewrite Rmult_assoc. -rewrite <- Rinv_mult_distr. -replace 4 with 4. -reflexivity. -ring. -discrR. -discrR. -reflexivity. -case (Rcase_abs (sin (x - y))); intro H9. -assumption. -generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9; - generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; - generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; - generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); - replace (/ cos x * / cos y) with (/ (cos x * cos y)). -intro H12; - generalize - (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9 - (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13; - elim - (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)). -rewrite Rinv_mult_distr. -reflexivity. -assumption. -assumption. + forall x y:R, + - (PI / 4) <= x -> + x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y. +Proof. + intros; generalize PI4_RLT_PI2; intro H4; + generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); + intro H5; change (- (PI / 2) < - (PI / 4)) in H5; + generalize + (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) + (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; + generalize + (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) + (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; + generalize + (sym_not_eq + (Rlt_not_eq 0 (cos x) + (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) + (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); + intro H6; + generalize + (sym_not_eq + (Rlt_not_eq 0 (cos y) + (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) + (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); + intro H7; generalize (tan_diff x y H6 H7); intro H8; + generalize (Rlt_minus (tan x) (tan y) H3); clear H3; + intro H3; rewrite H8 in H3; cut (sin (x - y) < 0). + intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1); + rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10); + clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2); + intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); + clear H11; intro H11; + generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); + generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10); + replace (x + - y) with (x - y). + replace (PI / 4 + PI / 4) with (PI / 2). + replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)). + intros; case (Rtotal_order 0 (x - y)); intro H14. + generalize + (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI)); + intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)). + elim H14; intro H15. + rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9). + apply Rminus_lt; assumption. + pattern PI at 1 in |- *; rewrite double_var. + unfold Rdiv in |- *. + rewrite Rmult_plus_distr_r. + repeat rewrite Rmult_assoc. + rewrite <- Rinv_mult_distr. + rewrite Ropp_plus_distr. + replace 4 with 4. + reflexivity. + ring. + discrR. + discrR. + pattern PI at 1 in |- *; rewrite double_var. + unfold Rdiv in |- *. + rewrite Rmult_plus_distr_r. + repeat rewrite Rmult_assoc. + rewrite <- Rinv_mult_distr. + replace 4 with 4. + reflexivity. + ring. + discrR. + discrR. + reflexivity. + case (Rcase_abs (sin (x - y))); intro H9. + assumption. + generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9; + generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; + generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; + generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); + replace (/ cos x * / cos y) with (/ (cos x * cos y)). + intro H12; + generalize + (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9 + (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13; + elim + (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)). + rewrite Rinv_mult_distr. + reflexivity. + assumption. + assumption. Qed. Lemma tan_increasing_1 : - forall x y:R, - - (PI / 4) <= x -> - x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y. -intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4; - generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); - intro H5; change (- (PI / 2) < - (PI / 4)) in H5; - generalize - (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) - (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; - generalize - (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) - (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; - generalize - (sym_not_eq - (Rlt_not_eq 0 (cos x) - (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) - (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); - intro H6; - generalize - (sym_not_eq - (Rlt_not_eq 0 (cos y) - (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) - (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); - intro H7; rewrite (tan_diff x y H6 H7); - generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; - generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; - generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); - replace (/ cos x * / cos y) with (/ (cos x * cos y)). -clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2); - intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); - clear H11; intro H11; - generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); - replace (x + - y) with (x - y). -replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)). -clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3; - clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI; - intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1); - clear H1; intro H1; - generalize - (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3); - intro H2; - generalize - (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8); - rewrite Rmult_0_r; intro H4; assumption. -pattern PI at 1 in |- *; rewrite double_var. -unfold Rdiv in |- *. -rewrite Rmult_plus_distr_r. -repeat rewrite Rmult_assoc. -rewrite <- Rinv_mult_distr. -replace 4 with 4. -rewrite Ropp_plus_distr. -reflexivity. -ring. -discrR. -discrR. -reflexivity. -apply Rinv_mult_distr; assumption. + forall x y:R, + - (PI / 4) <= x -> + x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y. +Proof. + intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4; + generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); + intro H5; change (- (PI / 2) < - (PI / 4)) in H5; + generalize + (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) + (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; + generalize + (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) + (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; + generalize + (sym_not_eq + (Rlt_not_eq 0 (cos x) + (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) + (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); + intro H6; + generalize + (sym_not_eq + (Rlt_not_eq 0 (cos y) + (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) + (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); + intro H7; rewrite (tan_diff x y H6 H7); + generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; + generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; + generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); + replace (/ cos x * / cos y) with (/ (cos x * cos y)). + clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2); + intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); + clear H11; intro H11; + generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); + replace (x + - y) with (x - y). + replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)). + clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3; + clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI; + intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1); + clear H1; intro H1; + generalize + (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3); + intro H2; + generalize + (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8); + rewrite Rmult_0_r; intro H4; assumption. + pattern PI at 1 in |- *; rewrite double_var. + unfold Rdiv in |- *. + rewrite Rmult_plus_distr_r. + repeat rewrite Rmult_assoc. + rewrite <- Rinv_mult_distr. + replace 4 with 4. + rewrite Ropp_plus_distr. + reflexivity. + ring. + discrR. + discrR. + reflexivity. + apply Rinv_mult_distr; assumption. Qed. Lemma sin_incr_0 : - forall x y:R, - - (PI / 2) <= x -> - x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y. -intros; case (Rtotal_order (sin x) (sin y)); intro H4; - [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ] - | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. + forall x y:R, + - (PI / 2) <= x -> + x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y. +Proof. + intros; case (Rtotal_order (sin x) (sin y)); intro H4; + [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ] + | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. Qed. Lemma sin_incr_1 : - forall x y:R, - - (PI / 2) <= x -> - x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y. -intros; case (Rtotal_order x y); intro H4; - [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (sin x) (sin y)); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. + forall x y:R, + - (PI / 2) <= x -> + x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (sin x) (sin y)); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. Lemma sin_decr_0 : - forall x y:R, - x <= 3 * (PI / 2) -> - PI / 2 <= x -> - y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x. -intros; case (Rtotal_order (sin x) (sin y)); intro H4; - [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) - | elim H6; intro H7; - [ right; symmetry in |- *; assumption | left; assumption ] ] - | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. + forall x y:R, + x <= 3 * (PI / 2) -> + PI / 2 <= x -> + y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x. +Proof. + intros; case (Rtotal_order (sin x) (sin y)); intro H4; + [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) + | elim H6; intro H7; + [ right; symmetry in |- *; assumption | left; assumption ] ] + | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. Qed. Lemma sin_decr_1 : - forall x y:R, - x <= 3 * (PI / 2) -> - PI / 2 <= x -> - y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x. -intros; case (Rtotal_order x y); intro H4; - [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (sin x) (sin y)); intro H6; - [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) - | elim H6; intro H7; - [ right; symmetry in |- *; assumption | left; assumption ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. + forall x y:R, + x <= 3 * (PI / 2) -> + PI / 2 <= x -> + y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (sin x) (sin y)); intro H6; + [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) + | elim H6; intro H7; + [ right; symmetry in |- *; assumption | left; assumption ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. Lemma cos_incr_0 : - forall x y:R, - PI <= x -> - x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y. -intros; case (Rtotal_order (cos x) (cos y)); intro H4; - [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ] - | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. + forall x y:R, + PI <= x -> + x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y. +Proof. + intros; case (Rtotal_order (cos x) (cos y)); intro H4; + [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ] + | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. Qed. Lemma cos_incr_1 : - forall x y:R, - PI <= x -> - x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y. -intros; case (Rtotal_order x y); intro H4; - [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (cos x) (cos y)); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. + forall x y:R, + PI <= x -> + x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (cos x) (cos y)); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. Lemma cos_decr_0 : - forall x y:R, - 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x. -intros; case (Rtotal_order (cos x) (cos y)); intro H4; - [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) - | elim H6; intro H7; - [ right; symmetry in |- *; assumption | left; assumption ] ] - | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. + forall x y:R, + 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x. +Proof. + intros; case (Rtotal_order (cos x) (cos y)); intro H4; + [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) + | elim H6; intro H7; + [ right; symmetry in |- *; assumption | left; assumption ] ] + | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. Qed. Lemma cos_decr_1 : - forall x y:R, - 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x. -intros; case (Rtotal_order x y); intro H4; - [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (cos x) (cos y)); intro H6; - [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) - | elim H6; intro H7; - [ right; symmetry in |- *; assumption | left; assumption ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. + forall x y:R, + 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (cos x) (cos y)); intro H6; + [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) + | elim H6; intro H7; + [ right; symmetry in |- *; assumption | left; assumption ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. Lemma tan_incr_0 : - forall x y:R, - - (PI / 4) <= x -> - x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y. -intros; case (Rtotal_order (tan x) (tan y)); intro H4; - [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ] - | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ]. + forall x y:R, + - (PI / 4) <= x -> + x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y. +Proof. + intros; case (Rtotal_order (tan x) (tan y)); intro H4; + [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ] + | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ]. Qed. Lemma tan_incr_1 : - forall x y:R, - - (PI / 4) <= x -> - x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y. -intros; case (Rtotal_order x y); intro H4; - [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (tan x) (tan y)); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. + forall x y:R, + - (PI / 4) <= x -> + x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (tan x) (tan y)); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. (**********) Lemma sin_eq_0_1 : forall x:R, (exists k : Z, x = IZR k * PI) -> sin x = 0. -intros. -elim H; intros. -apply (Zcase_sign x0). -intro. -rewrite H1 in H0. -simpl in H0. -rewrite H0; rewrite Rmult_0_l; apply sin_0. -intro. -cut (0 <= x0)%Z. -intro. -elim (IZN x0 H2); intros. -rewrite H3 in H0. -rewrite <- INR_IZR_INZ in H0. -rewrite H0. -elim (even_odd_cor x1); intros. -elim H4; intro. -rewrite H5. -rewrite mult_INR. -simpl in |- *. -rewrite <- (Rplus_0_l (2 * INR x2 * PI)). -rewrite sin_period. -apply sin_0. -rewrite H5. -rewrite S_INR; rewrite mult_INR. -simpl in |- *. -rewrite Rmult_plus_distr_r. -rewrite Rmult_1_l; rewrite sin_plus. -rewrite sin_PI. -rewrite Rmult_0_r. -rewrite <- (Rplus_0_l (2 * INR x2 * PI)). -rewrite sin_period. -rewrite sin_0; ring. -apply le_IZR. -left; apply IZR_lt. -assert (H2 := Zorder.Zgt_iff_lt). -elim (H2 x0 0%Z); intros. -apply H3; assumption. -intro. -rewrite H0. -replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)). -cut (0 <= - x0)%Z. -intro. -rewrite <- Ropp_Ropp_IZR. -elim (IZN (- x0) H2); intros. -rewrite H3. -rewrite <- INR_IZR_INZ. -elim (even_odd_cor x1); intros. -elim H4; intro. -rewrite H5. -rewrite mult_INR. -simpl in |- *. -rewrite <- (Rplus_0_l (2 * INR x2 * PI)). -rewrite sin_period. -rewrite sin_0; ring. -rewrite H5. -rewrite S_INR; rewrite mult_INR. -simpl in |- *. -rewrite Rmult_plus_distr_r. -rewrite Rmult_1_l; rewrite sin_plus. -rewrite sin_PI. -rewrite Rmult_0_r. -rewrite <- (Rplus_0_l (2 * INR x2 * PI)). -rewrite sin_period. -rewrite sin_0; ring. -apply le_IZR. -apply Rplus_le_reg_l with (IZR x0). -rewrite Rplus_0_r. -rewrite Ropp_Ropp_IZR. -rewrite Rplus_opp_r. -left; replace 0 with (IZR 0); [ apply IZR_lt | reflexivity ]. -assumption. -rewrite <- sin_neg. -rewrite Ropp_mult_distr_l_reverse. -rewrite Ropp_involutive. -reflexivity. +Proof. + intros. + elim H; intros. + apply (Zcase_sign x0). + intro. + rewrite H1 in H0. + simpl in H0. + rewrite H0; rewrite Rmult_0_l; apply sin_0. + intro. + cut (0 <= x0)%Z. + intro. + elim (IZN x0 H2); intros. + rewrite H3 in H0. + rewrite <- INR_IZR_INZ in H0. + rewrite H0. + elim (even_odd_cor x1); intros. + elim H4; intro. + rewrite H5. + rewrite mult_INR. + simpl in |- *. + rewrite <- (Rplus_0_l (2 * INR x2 * PI)). + rewrite sin_period. + apply sin_0. + rewrite H5. + rewrite S_INR; rewrite mult_INR. + simpl in |- *. + rewrite Rmult_plus_distr_r. + rewrite Rmult_1_l; rewrite sin_plus. + rewrite sin_PI. + rewrite Rmult_0_r. + rewrite <- (Rplus_0_l (2 * INR x2 * PI)). + rewrite sin_period. + rewrite sin_0; ring. + apply le_IZR. + left; apply IZR_lt. + assert (H2 := Zorder.Zgt_iff_lt). + elim (H2 x0 0%Z); intros. + apply H3; assumption. + intro. + rewrite H0. + replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)). + cut (0 <= - x0)%Z. + intro. + rewrite <- Ropp_Ropp_IZR. + elim (IZN (- x0) H2); intros. + rewrite H3. + rewrite <- INR_IZR_INZ. + elim (even_odd_cor x1); intros. + elim H4; intro. + rewrite H5. + rewrite mult_INR. + simpl in |- *. + rewrite <- (Rplus_0_l (2 * INR x2 * PI)). + rewrite sin_period. + rewrite sin_0; ring. + rewrite H5. + rewrite S_INR; rewrite mult_INR. + simpl in |- *. + rewrite Rmult_plus_distr_r. + rewrite Rmult_1_l; rewrite sin_plus. + rewrite sin_PI. + rewrite Rmult_0_r. + rewrite <- (Rplus_0_l (2 * INR x2 * PI)). + rewrite sin_period. + rewrite sin_0; ring. + apply le_IZR. + apply Rplus_le_reg_l with (IZR x0). + rewrite Rplus_0_r. + rewrite Ropp_Ropp_IZR. + rewrite Rplus_opp_r. + left; replace 0 with (IZR 0); [ apply IZR_lt | reflexivity ]. + assumption. + rewrite <- sin_neg. + rewrite Ropp_mult_distr_l_reverse. + rewrite Ropp_involutive. + reflexivity. Qed. Lemma sin_eq_0_0 : forall x:R, sin x = 0 -> exists k : Z, x = IZR k * PI. -intros. -assert (H0 := euclidian_division x PI PI_neq0). -elim H0; intros q H1. -elim H1; intros r H2. -exists q. -cut (r = 0). -intro. -elim H2; intros H4 _; rewrite H4; rewrite H3. -apply Rplus_0_r. -elim H2; intros. -rewrite H3 in H. -rewrite sin_plus in H. -cut (sin (IZR q * PI) = 0). -intro. -rewrite H5 in H. -rewrite Rmult_0_l in H. -rewrite Rplus_0_l in H. -assert (H6 := Rmult_integral _ _ H). -elim H6; intro. -assert (H8 := sin2_cos2 (IZR q * PI)). -rewrite H5 in H8; rewrite H7 in H8. -rewrite Rsqr_0 in H8. -rewrite Rplus_0_r in H8. -elim R1_neq_R0; symmetry in |- *; assumption. -cut (r = 0 \/ 0 < r < PI). -intro; elim H8; intro. -assumption. -elim H9; intros. -assert (H12 := sin_gt_0 _ H10 H11). -rewrite H7 in H12; elim (Rlt_irrefl _ H12). -rewrite Rabs_right in H4. -elim H4; intros. -case (Rtotal_order 0 r); intro. -right; split; assumption. -elim H10; intro. -left; symmetry in |- *; assumption. -elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H8 H11)). -apply Rle_ge. -left; apply PI_RGT_0. -apply sin_eq_0_1. -exists q; reflexivity. +Proof. + intros. + assert (H0 := euclidian_division x PI PI_neq0). + elim H0; intros q H1. + elim H1; intros r H2. + exists q. + cut (r = 0). + intro. + elim H2; intros H4 _; rewrite H4; rewrite H3. + apply Rplus_0_r. + elim H2; intros. + rewrite H3 in H. + rewrite sin_plus in H. + cut (sin (IZR q * PI) = 0). + intro. + rewrite H5 in H. + rewrite Rmult_0_l in H. + rewrite Rplus_0_l in H. + assert (H6 := Rmult_integral _ _ H). + elim H6; intro. + assert (H8 := sin2_cos2 (IZR q * PI)). + rewrite H5 in H8; rewrite H7 in H8. + rewrite Rsqr_0 in H8. + rewrite Rplus_0_r in H8. + elim R1_neq_R0; symmetry in |- *; assumption. + cut (r = 0 \/ 0 < r < PI). + intro; elim H8; intro. + assumption. + elim H9; intros. + assert (H12 := sin_gt_0 _ H10 H11). + rewrite H7 in H12; elim (Rlt_irrefl _ H12). + rewrite Rabs_right in H4. + elim H4; intros. + case (Rtotal_order 0 r); intro. + right; split; assumption. + elim H10; intro. + left; symmetry in |- *; assumption. + elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H8 H11)). + apply Rle_ge. + left; apply PI_RGT_0. + apply sin_eq_0_1. + exists q; reflexivity. Qed. Lemma cos_eq_0_0 : - forall x:R, cos x = 0 -> exists k : Z, x = IZR k * PI + PI / 2. -intros x H; rewrite cos_sin in H; generalize (sin_eq_0_0 (PI / INR 2 + x) H); - intro H2; elim H2; intros x0 H3; exists (x0 - Z_of_nat 1)%Z; - rewrite <- Z_R_minus; ring; rewrite Rmult_comm; rewrite <- H3; - unfold INR in |- *. -rewrite (double_var (- PI)); unfold Rdiv in |- *; ring. + forall x:R, cos x = 0 -> exists k : Z, x = IZR k * PI + PI / 2. +Proof. + intros x H; rewrite cos_sin in H; generalize (sin_eq_0_0 (PI / INR 2 + x) H); + intro H2; elim H2; intros x0 H3; exists (x0 - Z_of_nat 1)%Z; + rewrite <- Z_R_minus; simpl; ring_simplify; +(* rewrite (Rmult_comm PI);*) (* old ring compat *) + rewrite <- H3; simpl; + field; repeat split; discrR. Qed. Lemma cos_eq_0_1 : - forall x:R, (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0. -intros x H1; rewrite cos_sin; elim H1; intros x0 H2; rewrite H2; - replace (PI / 2 + (IZR x0 * PI + PI / 2)) with (IZR x0 * PI + PI). -rewrite neg_sin; rewrite <- Ropp_0. -apply Ropp_eq_compat; apply sin_eq_0_1; exists x0; reflexivity. -pattern PI at 2 in |- *; rewrite (double_var PI); ring. + forall x:R, (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0. +Proof. + intros x H1; rewrite cos_sin; elim H1; intros x0 H2; rewrite H2; + replace (PI / 2 + (IZR x0 * PI + PI / 2)) with (IZR x0 * PI + PI). + rewrite neg_sin; rewrite <- Ropp_0. + apply Ropp_eq_compat; apply sin_eq_0_1; exists x0; reflexivity. + pattern PI at 2 in |- *; rewrite (double_var PI); ring. Qed. Lemma sin_eq_O_2PI_0 : - forall x:R, - 0 <= x -> x <= 2 * PI -> sin x = 0 -> x = 0 \/ x = PI \/ x = 2 * PI. -intros; generalize (sin_eq_0_0 x H1); intro. -elim H2; intros k0 H3. -case (Rtotal_order PI x); intro. -rewrite H3 in H4; rewrite H3 in H0. -right; right. -generalize - (Rmult_lt_compat_r (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0) H4); - rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. -rewrite Rmult_1_r; intro; - generalize - (Rmult_le_compat_r (/ PI) (IZR k0 * PI) (2 * PI) - (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H0); - repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. -repeat rewrite Rmult_1_r; intro; - generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H5); - rewrite <- plus_IZR. -replace (IZR (-2) + 1) with (-1). -intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) 2 H6); - rewrite <- plus_IZR. -replace (IZR (-2) + 2) with 0. -intro; cut (-1 < IZR (-2 + k0) < 1). -intro; generalize (one_IZR_lt1 (-2 + k0) H9); intro. -cut (k0 = 2%Z). -intro; rewrite H11 in H3; rewrite H3; simpl in |- *. -reflexivity. -rewrite <- (Zplus_opp_l 2) in H10; generalize (Zplus_reg_l (-2) k0 2 H10); - intro; assumption. -split. -assumption. -apply Rle_lt_trans with 0. -assumption. -apply Rlt_0_1. -simpl in |- *; ring. -simpl in |- *; ring. -apply PI_neq0. -apply PI_neq0. -elim H4; intro. -right; left. -symmetry in |- *; assumption. -left. -rewrite H3 in H5; rewrite H3 in H; - generalize - (Rmult_lt_compat_r (/ PI) (IZR k0 * PI) PI (Rinv_0_lt_compat PI PI_RGT_0) - H5); rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. -rewrite Rmult_1_r; intro; - generalize - (Rmult_le_compat_r (/ PI) 0 (IZR k0 * PI) - (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H); - repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. -rewrite Rmult_1_r; rewrite Rmult_0_l; intro. -cut (-1 < IZR k0 < 1). -intro; generalize (one_IZR_lt1 k0 H8); intro; rewrite H9 in H3; rewrite H3; - simpl in |- *; apply Rmult_0_l. -split. -apply Rlt_le_trans with 0. -rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; apply Rlt_0_1. -assumption. -assumption. -apply PI_neq0. -apply PI_neq0. + forall x:R, + 0 <= x -> x <= 2 * PI -> sin x = 0 -> x = 0 \/ x = PI \/ x = 2 * PI. +Proof. + intros; generalize (sin_eq_0_0 x H1); intro. + elim H2; intros k0 H3. + case (Rtotal_order PI x); intro. + rewrite H3 in H4; rewrite H3 in H0. + right; right. + generalize + (Rmult_lt_compat_r (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0) H4); + rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. + rewrite Rmult_1_r; intro; + generalize + (Rmult_le_compat_r (/ PI) (IZR k0 * PI) (2 * PI) + (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H0); + repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. + repeat rewrite Rmult_1_r; intro; + generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H5); + rewrite <- plus_IZR. + replace (IZR (-2) + 1) with (-1). + intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) 2 H6); + rewrite <- plus_IZR. + replace (IZR (-2) + 2) with 0. + intro; cut (-1 < IZR (-2 + k0) < 1). + intro; generalize (one_IZR_lt1 (-2 + k0) H9); intro. + cut (k0 = 2%Z). + intro; rewrite H11 in H3; rewrite H3; simpl in |- *. + reflexivity. + rewrite <- (Zplus_opp_l 2) in H10; generalize (Zplus_reg_l (-2) k0 2 H10); + intro; assumption. + split. + assumption. + apply Rle_lt_trans with 0. + assumption. + apply Rlt_0_1. + simpl in |- *; ring. + simpl in |- *; ring. + apply PI_neq0. + apply PI_neq0. + elim H4; intro. + right; left. + symmetry in |- *; assumption. + left. + rewrite H3 in H5; rewrite H3 in H; + generalize + (Rmult_lt_compat_r (/ PI) (IZR k0 * PI) PI (Rinv_0_lt_compat PI PI_RGT_0) + H5); rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. + rewrite Rmult_1_r; intro; + generalize + (Rmult_le_compat_r (/ PI) 0 (IZR k0 * PI) + (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H); + repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. + rewrite Rmult_1_r; rewrite Rmult_0_l; intro. + cut (-1 < IZR k0 < 1). + intro; generalize (one_IZR_lt1 k0 H8); intro; rewrite H9 in H3; rewrite H3; + simpl in |- *; apply Rmult_0_l. + split. + apply Rlt_le_trans with 0. + rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; apply Rlt_0_1. + assumption. + assumption. + apply PI_neq0. + apply PI_neq0. Qed. Lemma sin_eq_O_2PI_1 : - forall x:R, - 0 <= x -> x <= 2 * PI -> x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0. -intros x H1 H2 H3; elim H3; intro H4; - [ rewrite H4; rewrite sin_0; reflexivity - | elim H4; intro H5; - [ rewrite H5; rewrite sin_PI; reflexivity - | rewrite H5; rewrite sin_2PI; reflexivity ] ]. + forall x:R, + 0 <= x -> x <= 2 * PI -> x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0. +Proof. + intros x H1 H2 H3; elim H3; intro H4; + [ rewrite H4; rewrite sin_0; reflexivity + | elim H4; intro H5; + [ rewrite H5; rewrite sin_PI; reflexivity + | rewrite H5; rewrite sin_2PI; reflexivity ] ]. Qed. Lemma cos_eq_0_2PI_0 : - forall x:R, - 0 <= x -> x <= 2 * PI -> cos x = 0 -> x = PI / 2 \/ x = 3 * (PI / 2). -intros; case (Rtotal_order x (3 * (PI / 2))); intro. -rewrite cos_sin in H1. -cut (0 <= PI / 2 + x). -cut (PI / 2 + x <= 2 * PI). -intros; generalize (sin_eq_O_2PI_0 (PI / 2 + x) H4 H3 H1); intros. -decompose [or] H5. -generalize (Rplus_le_compat_l (PI / 2) 0 x H); rewrite Rplus_0_r; rewrite H6; - intro. -elim (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 H7)). -left. -generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) PI H7). -replace (- (PI / 2) + (PI / 2 + x)) with x. -replace (- (PI / 2) + PI) with (PI / 2). -intro; assumption. -pattern PI at 3 in |- *; rewrite (double_var PI); ring. -ring. -right. -generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) (2 * PI) H7). -replace (- (PI / 2) + (PI / 2 + x)) with x. -replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)). -intro; assumption. -rewrite double; pattern PI at 3 4 in |- *; rewrite (double_var PI); ring. -ring. -left; replace (2 * PI) with (PI / 2 + 3 * (PI / 2)). -apply Rplus_lt_compat_l; assumption. -rewrite (double PI); pattern PI at 3 4 in |- *; rewrite (double_var PI); ring. -apply Rplus_le_le_0_compat. -left; unfold Rdiv in |- *; apply Rmult_lt_0_compat. -apply PI_RGT_0. -apply Rinv_0_lt_compat; prove_sup0. -assumption. -elim H2; intro. -right; assumption. -generalize (cos_eq_0_0 x H1); intro; elim H4; intros k0 H5. -rewrite H5 in H3; rewrite H5 in H0; - generalize - (Rplus_lt_compat_l (- (PI / 2)) (3 * (PI / 2)) (IZR k0 * PI + PI / 2) H3); - generalize - (Rplus_le_compat_l (- (PI / 2)) (IZR k0 * PI + PI / 2) (2 * PI) H0). -replace (- (PI / 2) + 3 * (PI / 2)) with PI. -replace (- (PI / 2) + (IZR k0 * PI + PI / 2)) with (IZR k0 * PI). -replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)). -intros; - generalize - (Rmult_lt_compat_l (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0) - H7); - generalize - (Rmult_le_compat_l (/ PI) (IZR k0 * PI) (3 * (PI / 2)) - (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H6). -replace (/ PI * (IZR k0 * PI)) with (IZR k0). -replace (/ PI * (3 * (PI / 2))) with (3 * / 2). -rewrite <- Rinv_l_sym. -intros; generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H9); - rewrite <- plus_IZR. -replace (IZR (-2) + 1) with (-1). -intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) (3 * / 2) H8); - rewrite <- plus_IZR. -replace (IZR (-2) + 2) with 0. -intro; cut (-1 < IZR (-2 + k0) < 1). -intro; generalize (one_IZR_lt1 (-2 + k0) H12); intro. -cut (k0 = 2%Z). -intro; rewrite H14 in H8. -assert (Hyp : 0 < 2). -prove_sup0. -generalize (Rmult_le_compat_l 2 (IZR 2) (3 * / 2) (Rlt_le 0 2 Hyp) H8); - simpl in |- *. -replace 4 with 4. -replace (2 * (3 * / 2)) with 3. -intro; cut (3 < 4). -intro; elim (Rlt_irrefl 3 (Rlt_le_trans 3 4 3 H16 H15)). -generalize (Rplus_lt_compat_l 3 0 1 Rlt_0_1); rewrite Rplus_0_r. -replace (3 + 1) with 4. -intro; assumption. -ring. -symmetry in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. -discrR. -ring. -rewrite <- (Zplus_opp_l 2) in H13; generalize (Zplus_reg_l (-2) k0 2 H13); - intro; assumption. -split. -assumption. -apply Rle_lt_trans with (IZR (-2) + 3 * / 2). -assumption. -simpl in |- *; replace (-2 + 3 * / 2) with (- (1 * / 2)). -apply Rlt_trans with 0. -rewrite <- Ropp_0; apply Ropp_lt_gt_contravar. -apply Rmult_lt_0_compat; - [ apply Rlt_0_1 | apply Rinv_0_lt_compat; prove_sup0 ]. -apply Rlt_0_1. -rewrite Rmult_1_l; apply Rmult_eq_reg_l with 2. -rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_r_sym. -rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m. -ring. -discrR. -discrR. -discrR. -simpl in |- *; ring. -simpl in |- *; ring. -apply PI_neq0. -unfold Rdiv in |- *; pattern 3 at 1 in |- *; rewrite (Rmult_comm 3); - repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. -rewrite Rmult_1_l; apply Rmult_comm. -apply PI_neq0. -symmetry in |- *; rewrite (Rmult_comm (/ PI)); rewrite Rmult_assoc; - rewrite <- Rinv_r_sym. -apply Rmult_1_r. -apply PI_neq0. -rewrite double; pattern PI at 3 4 in |- *; rewrite double_var; ring. -ring. -pattern PI at 1 in |- *; rewrite double_var; ring. + forall x:R, + 0 <= x -> x <= 2 * PI -> cos x = 0 -> x = PI / 2 \/ x = 3 * (PI / 2). +Proof. + intros; case (Rtotal_order x (3 * (PI / 2))); intro. + rewrite cos_sin in H1. + cut (0 <= PI / 2 + x). + cut (PI / 2 + x <= 2 * PI). + intros; generalize (sin_eq_O_2PI_0 (PI / 2 + x) H4 H3 H1); intros. + decompose [or] H5. + generalize (Rplus_le_compat_l (PI / 2) 0 x H); rewrite Rplus_0_r; rewrite H6; + intro. + elim (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 H7)). + left. + generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) PI H7). + replace (- (PI / 2) + (PI / 2 + x)) with x. + replace (- (PI / 2) + PI) with (PI / 2). + intro; assumption. + pattern PI at 3 in |- *; rewrite (double_var PI); ring. + ring. + right. + generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) (2 * PI) H7). + replace (- (PI / 2) + (PI / 2 + x)) with x. + replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)). + intro; assumption. + rewrite double; pattern PI at 3 4 in |- *; rewrite (double_var PI); ring. + ring. + left; replace (2 * PI) with (PI / 2 + 3 * (PI / 2)). + apply Rplus_lt_compat_l; assumption. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite (double_var PI); ring. + apply Rplus_le_le_0_compat. + left; unfold Rdiv in |- *; apply Rmult_lt_0_compat. + apply PI_RGT_0. + apply Rinv_0_lt_compat; prove_sup0. + assumption. + elim H2; intro. + right; assumption. + generalize (cos_eq_0_0 x H1); intro; elim H4; intros k0 H5. + rewrite H5 in H3; rewrite H5 in H0; + generalize + (Rplus_lt_compat_l (- (PI / 2)) (3 * (PI / 2)) (IZR k0 * PI + PI / 2) H3); + generalize + (Rplus_le_compat_l (- (PI / 2)) (IZR k0 * PI + PI / 2) (2 * PI) H0). + replace (- (PI / 2) + 3 * (PI / 2)) with PI. + replace (- (PI / 2) + (IZR k0 * PI + PI / 2)) with (IZR k0 * PI). + replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)). + intros; + generalize + (Rmult_lt_compat_l (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0) + H7); + generalize + (Rmult_le_compat_l (/ PI) (IZR k0 * PI) (3 * (PI / 2)) + (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H6). + replace (/ PI * (IZR k0 * PI)) with (IZR k0). + replace (/ PI * (3 * (PI / 2))) with (3 * / 2). + rewrite <- Rinv_l_sym. + intros; generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H9); + rewrite <- plus_IZR. + replace (IZR (-2) + 1) with (-1). + intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) (3 * / 2) H8); + rewrite <- plus_IZR. + replace (IZR (-2) + 2) with 0. + intro; cut (-1 < IZR (-2 + k0) < 1). + intro; generalize (one_IZR_lt1 (-2 + k0) H12); intro. + cut (k0 = 2%Z). + intro; rewrite H14 in H8. + assert (Hyp : 0 < 2). + prove_sup0. + generalize (Rmult_le_compat_l 2 (IZR 2) (3 * / 2) (Rlt_le 0 2 Hyp) H8); + simpl in |- *. + replace 4 with 4. + replace (2 * (3 * / 2)) with 3. + intro; cut (3 < 4). + intro; elim (Rlt_irrefl 3 (Rlt_le_trans 3 4 3 H16 H15)). + generalize (Rplus_lt_compat_l 3 0 1 Rlt_0_1); rewrite Rplus_0_r. + replace (3 + 1) with 4. + intro; assumption. + ring. + symmetry in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. + discrR. + ring. + rewrite <- (Zplus_opp_l 2) in H13; generalize (Zplus_reg_l (-2) k0 2 H13); + intro; assumption. + split. + assumption. + apply Rle_lt_trans with (IZR (-2) + 3 * / 2). + assumption. + simpl in |- *; replace (-2 + 3 * / 2) with (- (1 * / 2)). + apply Rlt_trans with 0. + rewrite <- Ropp_0; apply Ropp_lt_gt_contravar. + apply Rmult_lt_0_compat; + [ apply Rlt_0_1 | apply Rinv_0_lt_compat; prove_sup0 ]. + apply Rlt_0_1. + rewrite Rmult_1_l; apply Rmult_eq_reg_l with 2. + rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_r_sym. + rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m. + ring. + discrR. + discrR. + discrR. + simpl in |- *; ring. + simpl in |- *; ring. + apply PI_neq0. + unfold Rdiv in |- *; pattern 3 at 1 in |- *; rewrite (Rmult_comm 3); + repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. + rewrite Rmult_1_l; apply Rmult_comm. + apply PI_neq0. + symmetry in |- *; rewrite (Rmult_comm (/ PI)); rewrite Rmult_assoc; + rewrite <- Rinv_r_sym. + apply Rmult_1_r. + apply PI_neq0. + rewrite double; pattern PI at 3 4 in |- *; rewrite double_var; ring. + ring. + pattern PI at 1 in |- *; rewrite double_var; ring. Qed. Lemma cos_eq_0_2PI_1 : - forall x:R, - 0 <= x -> x <= 2 * PI -> x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0. -intros x H1 H2 H3; elim H3; intro H4; - [ rewrite H4; rewrite cos_PI2; reflexivity - | rewrite H4; rewrite cos_3PI2; reflexivity ]. + forall x:R, + 0 <= x -> x <= 2 * PI -> x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0. +Proof. + intros x H1 H2 H3; elim H3; intro H4; + [ rewrite H4; rewrite cos_PI2; reflexivity + | rewrite H4; rewrite cos_3PI2; reflexivity ]. Qed. |