summaryrefslogtreecommitdiff
path: root/theories/Reals/Rseries.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rseries.v')
-rw-r--r--theories/Reals/Rseries.v34
1 files changed, 17 insertions, 17 deletions
diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v
index 702aafa4..33b7c8d1 100644
--- a/theories/Reals/Rseries.v
+++ b/theories/Reals/Rseries.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rseries.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -71,7 +71,7 @@ Section sequence.
forall x:R, (forall n:nat, Un n <= x) -> is_upper_bound EUn x.
Proof.
intros; unfold is_upper_bound in |- *; intros; unfold EUn in H0; elim H0;
- clear H0; intros; generalize (H x1); intro; rewrite <- H0 in H1;
+ clear H0; intros; generalize (H x1); intro; rewrite <- H0 in H1;
trivial.
Qed.
@@ -81,7 +81,7 @@ Section sequence.
Proof.
double induction n m; intros.
unfold Rge in |- *; right; trivial.
- elimtype False; unfold ge in H1; generalize (le_Sn_O n0); intro; auto.
+ exfalso; unfold ge in H1; generalize (le_Sn_O n0); intro; auto.
cut (n0 >= 0)%nat.
generalize H0; intros; unfold Un_growing in H0;
apply
@@ -91,7 +91,7 @@ Section sequence.
elim (lt_eq_lt_dec n1 n0); intro y.
elim y; clear y; intro y.
unfold ge in H2; generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2)); intro;
- elimtype False; auto.
+ exfalso; auto.
rewrite y; unfold Rge in |- *; right; trivial.
unfold ge in H0; generalize (H0 (S n0) H1 (lt_le_S n0 n1 y)); intro;
unfold Un_growing in H1;
@@ -106,11 +106,11 @@ Section sequence.
Lemma Un_cv_crit : Un_growing -> bound EUn -> exists l : R, Un_cv l.
Proof.
unfold Un_growing, Un_cv in |- *; intros;
- generalize (completeness_weak EUn H0 EUn_noempty);
- intro; elim H1; clear H1; intros; split with x; intros;
+ generalize (completeness_weak EUn H0 EUn_noempty);
+ intro; elim H1; clear H1; intros; split with x; intros;
unfold is_lub in H1; unfold bound in H0; unfold is_upper_bound in H0, H1;
- elim H0; clear H0; intros; elim H1; clear H1; intros;
- generalize (H3 x0 H0); intro; cut (forall n:nat, Un n <= x);
+ elim H0; clear H0; intros; elim H1; clear H1; intros;
+ generalize (H3 x0 H0); intro; cut (forall n:nat, Un n <= x);
intro.
cut (exists N : nat, x - eps < Un N).
intro; elim H6; clear H6; intros; split with x1.
@@ -131,10 +131,10 @@ Section sequence.
apply (Rnot_lt_ge (x - eps) (Un N) (H7 N)).
red in |- *; intro; cut (forall N:nat, Un N <= x - eps).
intro; generalize (Un_bound_imp (x - eps) H7); intro;
- unfold is_upper_bound in H8; generalize (H3 (x - eps) H8);
+ unfold is_upper_bound in H8; generalize (H3 (x - eps) H8);
intro; generalize (Rle_minus x (x - eps) H9); unfold Rminus in |- *;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r;
- rewrite (let (H1, H2) := Rplus_ne (- - eps) in H2);
+ rewrite (let (H1, H2) := Rplus_ne (- - eps) in H2);
rewrite Ropp_involutive; intro; unfold Rgt in H2;
generalize (Rgt_not_le eps 0 H2); intro; auto.
intro; elim (H6 N); intro; unfold Rle in |- *.
@@ -151,7 +151,7 @@ Section sequence.
split with (Un 0); intros; rewrite (le_n_O_eq n H);
apply (Req_le (Un n) (Un n) (refl_equal (Un n))).
elim HrecN; clear HrecN; intros; split with (Rmax (Un (S N)) x); intros;
- elim (Rmax_Rle (Un (S N)) x (Un n)); intros; clear H1;
+ elim (Rmax_Rle (Un (S N)) x (Un n)); intros; clear H1;
inversion H0.
rewrite <- H1; rewrite <- H1 in H2;
apply
@@ -163,21 +163,21 @@ Section sequence.
Lemma cauchy_bound : Cauchy_crit -> bound EUn.
Proof.
unfold Cauchy_crit, bound in |- *; intros; unfold is_upper_bound in |- *;
- unfold Rgt in H; elim (H 1 Rlt_0_1); clear H; intros;
+ unfold Rgt in H; elim (H 1 Rlt_0_1); clear H; intros;
generalize (H x); intro; generalize (le_dec x); intro;
- elim (finite_greater x); intros; split with (Rmax x0 (Un x + 1));
- clear H; intros; unfold EUn in H; elim H; clear H;
+ elim (finite_greater x); intros; split with (Rmax x0 (Un x + 1));
+ clear H; intros; unfold EUn in H; elim H; clear H;
intros; elim (H1 x2); clear H1; intro y.
unfold ge in H0; generalize (H0 x2 (le_n x) y); clear H0; intro;
rewrite <- H in H0; unfold R_dist in H0; elim (Rabs_def2 (Un x - x1) 1 H0);
- clear H0; intros; elim (Rmax_Rle x0 (Un x + 1) x1);
+ clear H0; intros; elim (Rmax_Rle x0 (Un x + 1) x1);
intros; apply H4; clear H3 H4; right; clear H H0 y;
apply (Rlt_le x1 (Un x + 1)); generalize (Rlt_minus (-1) (Un x - x1) H1);
clear H1; intro; apply (Rminus_lt x1 (Un x + 1));
cut (-1 - (Un x - x1) = x1 - (Un x + 1));
[ intro; rewrite H0 in H; assumption | ring ].
generalize (H2 x2 y); clear H2 H0; intro; rewrite <- H in H0;
- elim (Rmax_Rle x0 (Un x + 1) x1); intros; clear H1;
+ elim (Rmax_Rle x0 (Un x + 1) x1); intros; clear H1;
apply H2; left; assumption.
Qed.
@@ -248,7 +248,7 @@ Proof.
cut
(Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x))) =
Rabs x * Rabs (/ x) * (eps * Rabs (1 - x))).
- clear H8; intros; rewrite H8; rewrite <- Rabs_mult; rewrite Rinv_r.
+ clear H8; intros; rewrite H8; rewrite <- Rabs_mult; rewrite Rinv_r.
rewrite Rabs_R1; cut (1 * (eps * Rabs (1 - x)) = Rabs (1 - x) * eps).
intros; rewrite H9; unfold Rle in |- *; right; reflexivity.
ring.