summaryrefslogtreecommitdiff
path: root/theories/Reals/Rpower.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rpower.v')
-rw-r--r--theories/Reals/Rpower.v34
1 files changed, 17 insertions, 17 deletions
diff --git a/theories/Reals/Rpower.v b/theories/Reals/Rpower.v
index adf53ef9..a4feed8f 100644
--- a/theories/Reals/Rpower.v
+++ b/theories/Reals/Rpower.v
@@ -6,8 +6,8 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rpower.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
-(*i Due to L.Thery i*)
+(*i $Id$ i*)
+(*i Due to L.Thery i*)
(************************************************************)
(* Definitions of log and Rpower : R->R->R; main properties *)
@@ -86,7 +86,7 @@ Proof.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
assert (H0 := cv_speed_pow_fact 1); unfold Un_cv in |- *; unfold Un_cv in H0;
- intros; elim (H0 _ H1); intros; exists x0; intros;
+ intros; elim (H0 _ H1); intros; exists x0; intros;
unfold R_dist in H2; unfold R_dist in |- *;
replace (/ INR (fact n)) with (1 ^ n / INR (fact n)).
apply (H2 _ H3).
@@ -139,8 +139,8 @@ Qed.
Lemma exp_ineq1 : forall x:R, 0 < x -> 1 + x < exp x.
Proof.
intros; apply Rplus_lt_reg_r with (- exp 0); rewrite <- (Rplus_comm (exp x));
- assert (H0 := MVT_cor1 exp 0 x derivable_exp H); elim H0;
- intros; elim H1; intros; unfold Rminus in H2; rewrite H2;
+ assert (H0 := MVT_cor1 exp 0 x derivable_exp H); elim H0;
+ intros; elim H1; intros; unfold Rminus in H2; rewrite H2;
rewrite Ropp_0; rewrite Rplus_0_r;
replace (derive_pt exp x0 (derivable_exp x0)) with (exp x0).
rewrite exp_0; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
@@ -162,7 +162,7 @@ Proof.
pose proof (IVT_cor f 0 y H2 (Rlt_le _ _ H0) H4) as (t,(_,H7));
exists t; unfold f in H7; apply Rminus_diag_uniq_sym; exact H7.
pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f y));
- rewrite (Rmult_comm (f 0)); apply Rmult_le_compat_l;
+ rewrite (Rmult_comm (f 0)); apply Rmult_le_compat_l;
assumption.
unfold f in |- *; apply Rplus_le_reg_l with y; left;
apply Rlt_trans with (1 + y).
@@ -191,7 +191,7 @@ Proof.
apply Rmult_eq_reg_l with (exp x / y).
unfold Rdiv in |- *; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite <- (Rmult_comm (/ y)); rewrite Rmult_assoc;
- rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0;
+ rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0;
rewrite Rmult_1_r; symmetry in |- *; apply p.
red in |- *; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H).
unfold Rdiv in |- *; apply prod_neq_R0.
@@ -216,7 +216,7 @@ Lemma exp_ln : forall x:R, 0 < x -> exp (ln x) = x.
Proof.
intros; unfold ln in |- *; case (Rlt_dec 0 x); intro.
unfold Rln in |- *;
- case (ln_exists (mkposreal x r) (cond_pos (mkposreal x r)));
+ case (ln_exists (mkposreal x r) (cond_pos (mkposreal x r)));
intros.
simpl in e; symmetry in |- *; apply e.
elim n; apply H.
@@ -248,7 +248,7 @@ Qed.
Theorem ln_increasing : forall x y:R, 0 < x -> x < y -> ln x < ln y.
Proof.
intros x y H H0; apply exp_lt_inv.
- repeat rewrite exp_ln.
+ repeat rewrite exp_ln.
apply H0.
apply Rlt_trans with x; assumption.
apply H.
@@ -270,7 +270,7 @@ Theorem ln_lt_inv : forall x y:R, 0 < x -> 0 < y -> ln x < ln y -> x < y.
Proof.
intros x y H H0 H1; rewrite <- (exp_ln x); try rewrite <- (exp_ln y).
apply exp_increasing; apply H1.
- assumption.
+ assumption.
assumption.
Qed.
@@ -299,7 +299,7 @@ Theorem ln_Rinv : forall x:R, 0 < x -> ln (/ x) = - ln x.
Proof.
intros x H; apply exp_inv; repeat rewrite exp_ln || rewrite exp_Ropp.
reflexivity.
- assumption.
+ assumption.
apply Rinv_0_lt_compat; assumption.
Qed.
@@ -325,7 +325,7 @@ Proof.
unfold dist, R_met, R_dist in |- *; simpl in |- *.
intros x [[H3 H4] H5].
cut (y * (x * / y) = x).
- intro Hxyy.
+ intro Hxyy.
replace (ln x - ln y) with (ln (x * / y)).
case (Rtotal_order x y); [ intros Hxy | intros [Hxy| Hxy] ].
rewrite Rabs_left.
@@ -470,7 +470,7 @@ Proof.
apply Rmult_eq_reg_l with (INR 2).
apply exp_inv.
fold Rpower in |- *.
- cut ((x ^R (/ 2)) ^R INR 2 = sqrt x ^R INR 2).
+ cut ((x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2).
unfold Rpower in |- *; auto.
rewrite Rpower_mult.
rewrite Rinv_l.
@@ -580,8 +580,8 @@ Proof.
(l := ln y) (g := fun x:R => (exp x - exp (ln y)) / (x - ln y)) (f := ln).
apply ln_continue; auto.
assert (H0 := derivable_pt_lim_exp (ln y)); unfold derivable_pt_lim in H0;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; elim (H0 _ H);
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold R_dist in |- *; intros; elim (H0 _ H);
intros; exists (pos x); split.
apply (cond_pos x).
intros; pattern y at 3 in |- *; rewrite <- exp_ln.
@@ -589,7 +589,7 @@ Proof.
[ idtac | ring ].
apply H1.
elim H2; intros H3 _; unfold D_x in H3; elim H3; clear H3; intros _ H3;
- apply Rminus_eq_contra; apply (sym_not_eq (A:=R));
+ apply Rminus_eq_contra; apply (sym_not_eq (A:=R));
apply H3.
elim H2; clear H2; intros _ H2; apply H2.
assumption.
@@ -600,7 +600,7 @@ Lemma derivable_pt_lim_ln : forall x:R, 0 < x -> derivable_pt_lim ln x (/ x).
Proof.
intros; assert (H0 := Dln x H); unfold D_in in H0; unfold limit1_in in H0;
unfold limit_in in H0; simpl in H0; unfold R_dist in H0;
- unfold derivable_pt_lim in |- *; intros; elim (H0 _ H1);
+ unfold derivable_pt_lim in |- *; intros; elim (H0 _ H1);
intros; elim H2; clear H2; intros; set (alp := Rmin x0 (x / 2));
assert (H4 : 0 < alp).
unfold alp in |- *; unfold Rmin in |- *; case (Rle_dec x0 (x / 2)); intro.